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 A B S T R A C T 

Most gears fail because of wear caused by rubbing, metal to metal contact, 
contamination, or breakdown of lubrication. Because of this, figuring out 
how to find and sort wear debris particles is an important area of research 
for both predictive and proactive maintenance. By putting these wear 
particles into different categories like spherical, cutting, fatigue, sliding 
and rubbing, it would be possible to identify the wear modes present in the 
gearbox and predict the nature of failure and condition of the system. The 
present research aims to automate the detection and classification 
process using the Convolutional Neural Network (CNN) integrated with 
Cascade classifier. CNN automatically extracts different suitable features 
from images by applying multiple filters on it and also reduces the 
complexity of image processing whereas the Cascade classifier is used to 
detect the particles by differentiating between positive and negative 
images by applying the Haar-like features into it. The objective of the 
research work is to provide a most efficient and accurate detection and 
classification of wear debris particles using a trained cascade classifier 
integrated with a customized lightweight CNN model named as Wear 
Particle Classifier Net (WPCnet). 
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1. INTRODUCTION 
 
It is crucial to have an early warning system for 
any gearbox faults so that appropriate action can 
be taken to avoid a disastrous failure. This would 
make it possible to calculate the usable 
remaining life and make planning maintenance 
strategies easier. The faults in the gearbox are 
generally manifested in the form of wear of gears 

and show up as wear particles in the lubricant. 
The tiny particles produced by the metal-to-
metal interaction between the two gears are 
known as wear debris. Many significant pieces of 
information about the machine in operation can 
be gleaned from these particles with the right 
research. The classification of the wear debris 
can be used to determine the level of wear and 
the wear process.  
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Once the data has been extracted from the wear 
debris, it can be used to specify the machine's 
state. However, it's crucial to classify this debris 
because different particle sizes, shapes, and other 
characteristics correlate to various wear 
mechanisms, which correspond to various faults. 
Six different kinds of metallic wear debris were 
categorized by Peng et al. [1] using a theory of 
grey relational grades, and the weighting factors 
were determined using fuzzy logic. This research 
has shown that wear particles can be successfully 
classified using a grey system and fuzzy logic. In 
his review of several research articles, Raadnui 
[2] emphasized the importance of enhancing the 
availability of "intelligent" objective methods for 
carrying out wear particle analysis. To increase 
the precision and speed of wear particle 
identification, Wang et al. [3] suggested a novel 
algorithm that combines principal component 
analysis and grey relational analysis. Using the 
particle boundary signal to examine wear particle 
features is the primary component of Yuan et al.'s 
new radial concave deviation (RCD) technique, 
which was described in their paper [4]. To 
identify four different kinds of wear debris, 
including cutting, sphere, fatigue, and severe 
sliding particles, Peng et al. [5] suggested a hybrid 
convolution neural network that would be used 
in conjunction with transfer learning (TL) and 
support vector machines (SVM). When wear 
particles stick together and conventional 
methods of wear debris identification are unable 
to classify wear particles, Peng et al. [6] proposed 
a way of classifying wear debris. Liu et al [7] 
proposed a CNN model named DWear to 
semantically segment fatigue, severe sliding 
particles and four other types of particles, 
namely, chain, spherical, cutting and oxide 
particles, which unifies segmentation and 
recognition together especially when the fatigue 
and severe sliding wear particle are similar in 
morphology while different in wear mechanism. 
In order to obtain smooth foreground object 
contours while dealing with noise, varying 
lighting, and dynamic backgrounds, Reddy et al. 
[8] suggested a block-based approach. 
Identification of wear particles can benefit 
greatly from this. The color shift visible to the 
naked eye relies on the concentration of CN-, and 
Bej et al. [9] developed a chemo-sensor for the 
detection of CN- from aqueous phase with a 
permissible level detection limit. Laghari et al 
[10] proposed a knowledge-based system for 
analysis of microscopic wear particles in order to 

classify these particles according to their 
morphological attributes of size, shape, edge 
detail, thickness ratio, color, and texture, and by 
using this classification thereby predict wear 
failure modes in engines and other machinery. A 
method to identify morphological characteristics 
that categorize wear particles in relation to the 
wear process from which they originate and 
allow the automatic identification without 
human expertise was suggested by Gonçalves et 
al. [11]. The approach is founded on the analysis 
of varieties of microscopic wear particles using 
Multi-Layer Perceptron (MLP). Through the 
classification of the particles based on machine 
learning, Jur'anek et al. [12] presented a new 
approach to wear debris analysis. The suggested 
classification method is based on supervised 
machine learning and the visual resemblance of 
the particles. A quick to use method for journal 
bearing design was described by Hirani et al. in 
their article [13]. Without requiring a human 
specialist, Liu et al.'s [14] suggested for a pattern 
recognition system for wear particle analysis. An 
unsupervised segmentation algorithm based on a 
local color-texture feature is used to 
automatically divide the images. Sengupta et al. 
[15] and Goilkar et al. [16] demonstrated that a 
protective layer on a mild steel component will 
lessen corrosion, avoid material wear, and keep 
outside particles from getting into the lubricant. 
UstbNet is a better lightweight convolutional 
neural network that Wang et al [17] suggested for 
the classification of wear debris images.  
 
To hasten model convergence and raise 
classification accuracy, several techniques were 
used, including data augmentation, batch 
normalization, number and size modification of 
convolution kernels, and loss function 
optimization. A new digital CNN (Cellular Neural 
Network) architecture for pattern recognition was 
introduced by Raschman et al. in their study [18]. 
The chip's area consumption and the computation 
speed per iteration were the two key design 
factors. Following a thorough analysis of existing 
methods, Qi et al. [19] introduced two unique 
network architectures for volumetric CNNs to 
enhance both volumetric CNNs and multi-view 
CNNs. By incorporating recurrent connections 
into each convolutional layer, Liang et al. [20] 
suggested a recurrent CNN (RCNN) for object 
recognition. Geng et al [21] surveyed the powerful 
CNNs and novel elaborate layers, structures and 
strategies, especially including those that have 
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achieved the state-of-the-art results on the Pascal 
VOC 2012 semantic segmentation challenge and 
proposed several possible directions and 
approaches to incorporate existing effective 
methods as components to enhance CNNs for the 
segmentation of specific semantic objects. 
Radenovi et al. [22] suggested to completely 
automate the process of optimizing CNNs for 
image retrieval on a large collection of unordered 
images. In their novel two-stream CNN design for 
semantic segmentation, Takikawa et al. [23] 
suggested explicitly wiring shape information as a 
distinct processing branch, or shape stream, that 
processes data concurrently with the traditional 
stream. In order to progress CNN technology, 
Khan et al. [24] investigated a number of concepts, 
including the use of various activation and loss 
functions, parameter optimization, regularization, 
and architectural innovations. The recent 
innovations in CNN architectures were 
categorized into seven distinct categories after the 
intrinsic taxonomy contained in the recently 
reported deep CNN architectures was examined. 
To provide a clear grasp of the hyper-parameter 
tuning of those models, Sultana et al. [25] 
reviewed the development of both semantic and 
instance segmentation work based on CNN, 
specified comparative architectural details of 
some state-of-the-art models, and discussed their 
training details.  
 
Ahmed at al [26] considered different sizes and 
numbers of filters with CNN to determine their 
effect on accuracy of classification. Azad et al [27] 
proposed a novel architecture that integrates a set 
of Difference of Gaussians (DoG) to attenuate high-
frequency local components in the feature space to 
remove the texture bias in the context of few-shot 
learning thereby producing a set of modified 
feature maps, whose high-frequency components 
are diminished at different standard deviation 
values of the Gaussian distribution in the spatial 
domain. To extract debris and bubble images 
using the Otsu method, Wang et al. [28] suggested 
a motion object extraction algorithm based on 
background differences. A convolutional neural 
network (CNN) algorithm is then used to 
differentiate between bubbles and debris. Jia et al. 
[29] showed that for intelligent wear particle 
classification, deep convolutional neural networks 
best suit using transfer learning and achieve an 
accuracy level of 88.39% but the missing part in 
their paper is the detection of the particles which 
was envisaged as the future work, but this model 

is included in the proposed integrated model 
WPCNet. CNN is the best fit for online analysis, 
which is used in the present paper.  
 
Wu et al. [30] showed multi-scale condition and 
corrosion expansion method and watershed 
segmentation method to separate the particle in 
the particle chain. To create a fault-prediction 
model using a machine learning approach, 
Poddar et al. [31] studied the acoustic emission 
signals that emerged from journal bearings in 
both their normal operating conditions and their 
faulty states, specifically cavitation, particle 
contamination, and oil starvation. To predict 
outputs like Form Factor, Convexity, Aspect 
Ratio, Solidity, and Roundness with respect to 
Running Hour, Engine RPM, and Engine Oil 
temperature, Mohanty et al. [32] studied the 
morphological characteristics of wear particles 
and proposed an intelligence-based ANN model 
using feed-forward backpropagation. To 
improve the efficiency of wear classification for 
all five categories, Wang et al. [33] proposed an 
integrated model of BP neural network and CNN 
algorithm; however, due to the lack of training 
data, accuracy was kept low for the sliding and 
fatigue particles, which is resolved by the 
proposed WPCNet model.  
 
Thomas, et al. [34] relied on computer image 
analysis techniques to extract the morphological 
features of particles from the images and then 
classify the particles manually based on the 
extracted features, which lacks automation in the 
wear particle classification process. The 
proposed method, however, overcomes this 
limitation by automating the classification using 
CNN. Stachowiak et al. [35] proposed wear 
particle classification based on particle shape and 
its surface texture and used SEM technology to 
capture the particle image and to create the 
dataset for classification and automate the 
classification process using linear SVM which is a 
machine learning based approach which is 
improved by the proposed method in this paper 
by using CNN algorithm which automatically 
extracts the feature from the images. Peng et al. 
investigated the correlation between vibration 
analysis and wear debris analysis and identified 
the dependent and independent roles of 
vibration and wear debris analyses in predicting 
and diagnosing machine faults, which inspired us 
to automate the process of wear debris analysis 
to diagnose machine faults [36]. 
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Hu et al. [37] demonstrated that a vibration 
indicator can be utilized to evaluate the effects of 
wear on gear performance. The authors have 
extracted a gear state vector from time 
synchronous averaged gear signals to describe the 
gear state. Wang et al. [38] demonstrated that two 
sets of Haar-like features, the original Haar-like 
features and the extended Haar-like features, can 
be used for extended cascading classifiers to detect 
cracks via stage classifiers. Haar-like features were 
used to depict fracture regions and train a 
cascading classifier for detecting cracks in wind 
turbine blades. This information is then integrated 
with the cascading classifier to detect and classify 
gear wear particles. Peng et al. [39] have shown an 
enhanced version of automatic wear particle 
detection and classification process using a cascade 
of two convolutional neural networks and a 
support vector machine (SVM) classifier reduces 
the computation expense and improves the 
accuracy but the classification of rubbing particle 
has not been attempted and the accuracy is low. Liu 
et al. [40] proposed a CNN model that is able to 
semantically segment fatigue, severe sliding 
particles and four other types of particles: chain, 
spherical, cutting and oxide particles and this 
knowledge can be further utilize to enhance the 
WPCNet model for the particle segmentation in 
online wear particle classification. Liu et al. [7] 
proposed a deep convolutional neural network 
(DCNN) with three modules and have used 
handcrafted features to classify the wear particle 
but it is only limited to two classes that are fatigue 

and sliding which is overcome by proposed 
WPCNet by including five classes of classification 
including rubbing, cutting and spherical. For end-
to-end processing, the DCNN can automatically 
learn features through a layer-wise representation 
and achieve semantic segmentation of distinct wear 
particles in ferro-graph images.  
 
The increase in operating conditions/temperature 
may increase the formation of wear particles [41]. 
Improper assembly of gear pairs can result in 
misalignment, which can be a significant factor in 
the formation of wear particles [42]. To understand 
the effect of various condition just usage of online 
condition monitoring may not be sufficient and to 
its widespread usage ML methods [43] now are 
required. Ciaburro et al [44] proposed a new 
methodology for automating the fan maintenance 
procedures based on the recording of the acoustic 
emission. The failure diagnosis using deep learning 
was evaluated for the detection of dust deposits on 
the blades of an axial fan.  
 
The main aim of this research work is to automate 
the complete process of detection and classification 
of wear particles in efficient manner. As compared 
to the conventional methods of detection and 
classification of wear particles, where the wear 
particle image collection is carried out in offline 
mode using SEM technology, the online automatic 
detection and classification of wear particles is the 
present need. Some of the images of wear particles 
obtained using SEM are shown in Figure 1. 

 

    

    
Fig. 1. SEM images of wear particles.  

 
The use of SEM technology is an offline activity 
which is not only costly but also time consuming. 
Moreover, expert operator is required to capture 
the images. After images collection, the analysis of 

the images requires expert knowledge to derive the 
morphological features. To avoid all these 
conventional methods which is dependent on 
human skills, a new method to automate the 
complete process is presented in this research work. 
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The proposed research work presents a method 
for highly accurate detection and classification of 
wear particles that can be adopted by various 
industrial units for real-time, ongoing 
monitoring of gear tools. This objective is 
achieved by integrating the cascade classifier 
with the light weight WPCNet CNN model for the 
wear particle classification. The WPCNet CNN 
model and cascade classifier are combined in the 
current research work to present a novel method 
to automate the detection and classification of 
wear particles. This technique, after only 100 
epochs, was able to reach the highest accuracy of 
97.4%. This shows that, when compared to all 
other conventional techniques, it is the most 
effective technique for the detection and 
classification of wear particles. 
 
The article is structured as follows: In Section 2, 
the methodology of wear particle classification is 
described in detail, followed by the experimental 
details in Section 3. The wear particle 
classification which includes the data pre-

processing, training of the model and prediction 
are mentioned in Section 4, while Section 5 
presents the results of the experimental studies 
and the corresponding discussion. Finally, the 
article concludes with key findings in Section 6. 
 
 
2. METHODOLOGY 
 
The main aim is to achieve the most accurate and 
efficient detection and classification of gear 
wear particles. In order to achieve this objective, 
the trained cascade classifier is integrated with 
the WPCNet CNN model. The complete process 
can be divided into two stages: in the first stage 
WPCNet CNN model is defined and trained for 
the wear debris classification and in the second 
stage CNN model is integrated with trained 
cascade classifier to detect the particle and 
classify it into five different classes that is 
Rubbing, Cutting, Spherical, Fatigue and Severe 
sliding. The architecture of the WPCNet CNN 
model is depicted in Figure 2. 

 

 
Fig. 2. Convolutional neural network WBCNet.  

 
In each convolutional layer, the kernel size and 
kernel number and number of neurons in fully 
connected layer are given in Table 1. 
 
As provided in Table 1, the architecture of the 
WPCNet CNN model consists of two convolutions 
layers of size 3x3 with 200 and 100 filters 
respectively. The activation function used with 
convolutions layers are ReLU and the filters are 
used to extract multiple features from the input 
images. Maximum pooling layer with pool size 

2x2 is used to extract the maximum features from 
the feature map generated from the convolution 
layer. To convert the 2-Dimensional matrix to 1-
Dimensional array, a Flatten layer is added so 
that the 1-d array value is provided to the fully 
connected layers for the classification purpose. 
Before sending to fully connected layers Dropout 
layer is added with value 0.5 to reduce the value 
50% randomly and sent to the first fully 
connected layer with 100 nodes and then to the 
fully connected layer with 50 nodes. The 
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activation function used with both the hidden 
layer is ReLU and Softmax activation function is 
used with the output layer of five nodes for the 
five classes of classification i.e., Cutting, Rubbing, 
Sliding, Fatigue and Spherical. Adam is used as an 
optimizer for the optimization of learning 
process with the learning rate value of 0.001 and 
Categorical crossentropy is used as loss function 
to reduce the error in learning process which 
subsequently helps in acquiring high 
classification accuracy. The complete model will 
be able to identify and classify the wear debris 
particle in real time effectively by integrating the 
WPCNet CNN model with Cascade classifier. The 
integration of both models was accomplished 
using the Juypter Notebook, a popular Python 
tool. The trained WPCNet CNN model is first 
called, and after particle detection is complete, 
the Cascade classifier uses it for classification. 
The Cascade classifier in the complete model 
allows the model to identify the particle, whereas 
the CNN model allows the model to classify the 
detected particle. Integration is necessary for the 
process to occur concurrently. 
 
Table 1. WPCNet network parameters. 

Model Content  Details 

First convolution layer 
200 filters, size 3x3, ReLU, 
input 100x100 

Max pooling layer Pooling size 2X2 

Second convolution layer 100 filters, size 3x3, ReLU 

Max pooling layer Pooling size 2x2 

Flatten layer Convert 2D matrix into 1D vector 

Dropout 0.5 (Dropout 50% randomly) 

First dense layer 100 Nodes, ReLU 

Second dense layer 50 Nodes, ReLU 

Output layer 5 Nodes for 5 classes, Softmax 

Loss function Categorical cross_entropy 

Learning rate 0.001 

Optimizer Adam 

 
A flow-chart of the methodology is given in Figure 3. 
 
 
3. EXPERIMENTAL DETAILS 
 
The experimental test rig is shown in Figure 4 (a) 
and 4 (b). A single stage gearbox with straight 
tooth gears (involute tooth profile with standard 
pressure angle of 20°) having a speed ratio of 2:1 
is used (27 teeth on pinion and 53 teeth on gear). 
The module of gear teeth is 2 mm. The face width 
of gear pair is 33 mm. The pitch diameter of 
pinion is 54 mm and that of gear is 106 mm. The 

base diameter is 50.7 mm and 99.6 mm 
respectively for the pinion and gear. The gear 
material is EN19. The lubricant used is GL-5 80W-
90, the splash lubrication system is used. The 
gear box is coupled to a 30 kW DC electric motor 
through L-type standard jaw couplings. eddy 
current dynamometer, online condition 
monitoring sensors, and a PC for data storage. 
The loading on the gearbox is provided by the 
attached dynamometer E-50 (eddy current type). 
The description of the experimental setup is also 
given in [43] and [45]. 
 

 
Fig. 3. Flow-chart of the methodology. 
 

 

 
(a) Experimental Setup 

DATA PRE-PROCESSING 

CREATING DATASET 
OF NEGATIVE AND 

POSITIVE IMAGE FOR 
CASCADE CLASSIFIER  

TRAINING CASCADE 
CLASSIFIER  

INTEGRATING CNN 
WITH CLASSIFIER 

UTILIZING THE INTEGRATED 
MODEL FOR DETECTION 

AND CLASSIFICATION 

Training CNN Model 

Image Collection 

Input image to model  
for live detection 

Electric Motor Gear 
Box 

Dynamometer 
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(b) Closeup view of Gearbox 

Fig. 4. Experimental setup. 

 
A digital microscope camera with an 800x zoom 
was used to capture the particle picture. The 
digital camera is directly connected to the 
computer via a USB port, and using the 
command line "source1=cv2.VideoCapture(1)", 
it transmits live images to the Python-based 
Juypter Notebook platform. 
 
This would guarantee that all calculations on the 
gathered live images take place in a single 
location. Below is some additional information 
about the microscopic camera: 5X to 800X 
magnification ratio, Dual focus optical system, 
Snapshot 4X digital zoom, HD 720P camera, 4-
1/2" (115mm) focusing distance, 4X sequence 
mode, digital zoom USB 2.0 and USB 1.1 suitable 
interface Dimensions: 117mm (L), 33mm (R), 
and power supply: DC 5V via USB connector. The 
size of field of view is 33mm (sensor 
diagonal)/800(magnification)= 0.04125 mm. 
The focusing range is 4-1/2" (115mm) and the 
dimensions are 117mm (L) and 33mm (R). A 
desktop computer with i5 (3.40 GHz), 8 GB RAM, 
NVIDIA GeForce GTX 1060 6G GPU is used in 
running the code. The entire experimentation 
has been conducted on three different software 
systems. 
 
1. Pluggable Digital Viewer: This tool is primarily 

used to gather data for the model by gathering 
images from the digital microscopy camera 
sensor. 

2. Juypter Notebook: The preprocessing of data, 
creation of the WPCNet CNN model, training of 
the CNN model, and integration of the CNN 
model with the Cascade classifier have all been 
done on this Python framework. 

3. Cascade Trainer GUI: This software mainly 
used for training the Cascade classifier with 
positive and negative images. 

 
 
4. WEAR PARTICLE CLASSIFICATION 
 
The process of wear particle classification can be 
divided into three stages. In the first stage the 
data pre-processing is carried out, in the second 
stage the process of defining and training the 
WPCNet CNN model is carried out and in the third 
stage the classification of wear particles using 
WPCNet is carried out. The complete process is 
shown in Figure 5. 
 

 
 
 

 
 
 

 
Fig. 5. Three stages of wear particle classification. 

 
4.1 Data Pre-processing 
 
To reduce the computation time and its 
complexity, the data needs to be pre-processed 
first, so that the data fits efficiently to the model 

DATA PREPROCESSING 
Data augmentation and Data labelling 
Defining category for labeled data 
Resize image to 100×100 
Array Data Normalization 
Reshaping image to (506, 100× 100×3) 
Saving the processed Data 

TRAINING CNN 
1. Applying first Conv2D layer with Relu activation 

function to input image with 200 filters of 
dimension 3x3 

2. Applying Max-polling layer with dimension 2X2 
3. Applying 2nd Conv2D layer with 100 filters of 

3X3 dimension 
4. Applying Max-polling layer with dimension 2X2 
5. Dense layer : 100 + Relu 
6. Dense layer + Relu 
7. Output layer with 5 nodes (SoftMax) 
8. Train and test split with 80% and 20% 
9. Training the CNN model with 100 epochs 

PREDICTION 
1. Load the train model with highest accuracy 
2. Read the image that need to be tested 
3. Resize it to 100x100 and normalize it to 0-1 

scale 
4. Make prediction by calling the function 

model.predict() 

Gear Box Input 
Shaft 

Output 
Shaft 

Coupling 
Motor 
shaft 
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for training purposes. In the experiment, five 
types of wear particles are collected from the 
lubricant of the gear box by using a 800x zoom 

digital microscope camera and categorized as 
cutting, spherical, fatigue, rubbing and severe 
sliding as shown in Figure 6. 

 

  
(a) Cutting (b) Fatigue 

   
(c) Spherical (d) Severe Sliding (e) Rubbing 

Fig. 6. Typical wear debris types, 
 
The parameters which are used for the pre-
processing are Data augmentation, Resizing all 
data to a particular size, Array data normalization, 
Reshaping data to appropriate shape and finally 
shaving data to Data and Target variable. Data 
augmentation means increasing the size of 
collected data by changing the orientation and size 
of the actual image. Resizing all data to a particular 
size is necessary as collected data can be of 
different sizes which cannot be sent directly for the 
training purpose. Data normalization is required in 
bringing the value of input array from range 0-255 
to range 0-1 to reduce the computation resource. 
Reshaping data to appropriate shape is necessary 
so that data can fit efficiently to the model during 
the training process. 
 
4.2 Training CNN 
 
Second stage consists of defining and training 
the CNN model. CNN can be defined as a multi-
layer neural network where layers include input 
layer, convolutional layer, pooling layer, flatten 
layer, fully connected layer and output layer. 
The convolutional layer has special capability to 

extract multidimensional features from a given 
image by applying multiple filters on it which 
enables the use of CNN in the fields where 
manual extraction of multidimensional features 
is difficult which broadens the application area 
of CNN. Some of available network models are 
AlexNet, ResNet, GoogleNet, Cifar10 and VGG. As 
these network complexities are high and they 
are trained on large datasets, it requires lots of 
computation resources and training time. An 
improved light weight integrated CNN model is 
presented in this paper. Eight parameters: data 
argumentation, loss function as 
categorical_crossentropy, optimizer as Adam 
and 200 of size 3x3 convolution kernel are used 
to speed up the model and to increase the 
detection and classification accuracy. The 
WPCNet consists of five layers which includes 
two convolutional layers with Relu as activation 
function and three fully connected layers. The 
model was trained using a sample set of 36 
people. These 36 wear particle images were 
collected, and through data augmentation, the 
number was raised to 506, with a division of 
80% for training and 20% for testing. 
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4.3 Prediction 
 
In the prediction stage, first the model is loaded 
with the highest accuracy to achieve the more 
accurate result in every test. The images need to be 
read in the python environment through a python 
package like OpenCV and then the images need to 
be resized to the same size of input image at the 
time of CNN training. The normalization is applied 
to the input image array to bring the array value in 
rage of 0 to 1 and then finally prediction can be 
made with respect to the input image by calling the 
function model.pridict(), this will result to the 
classification of input image in any one category out 
of five that is cutting, fatigue, sliding, rubbing and 
spherical. The wear particles were obtained from 
the experimental setup described in section 3. 
 
 

5. RESULTS AND DISCUSSION 
 

5.1 Data Augmentation  
 
The Data Augmentation is a method of amplifying 
the dataset or to increase the numbers of data 
from its original size by changing its orientation 
and size. The different orientation parameters 
available in data augmentation are skew, 
rescaling, rotation, flipping, shearing etc. The 
different parameters settings used in this 
experiment are provided in Table 2. 
 
Table 2. Parameters setting for data augmentation 
method. 

Method Settings 

Rotation Range - 40 

Rescaling 0.2 

Flipping vertical 

Flipping horizontal 

Shearing Range- 0.2 

Skew Random with magnitude 0.8 

Mode Nearest 

 
The data augmentation in this experiment 
enables the data set to increase from 36 to 506 
and the different transformed image by data 
augmentation is shown in Figure 7. 
 
The different training parameters in this 
experiment are activation function with conv 
layer: relu, dropout: 0.5, activation function for 
output layer: SoftMax, max epochs: 100, loss 
function: categorical_crossentropy, optimizer: 
Adam. The results are shown in Figure 8 and 9. 

 

 

 

 

 
Fig. 7. Wear particle views of different types of 
transformation. 

 

 
Fig. 8. The accuracy vs epochs curve. 

 

 
Fig. 9. The loss vs epochs curve. 
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It is observed that the training accuracy is in 
consonance with the validation accuracy. 
However, there is slightly increased validation 
loss as compared to the training loss. 
 
5.2 Data Analysis  
 
The basic WPCNet model consists of two 
convolutional layer and three fully connected 
layer. To investigate the performance of 
WPCNet in different scenarios different 
parameters are set with basic WPCNet and 
result is analysed at the end which indicates 
that it is achieving its highest accuracy with 
Adam as optimizer, loss function as 
categorical_crossentropy and SoftMax as 
output layer activation function.  
 
Multiple trials are run with multiple epochs to 
prevent the contingency, as shown in Figure 10. 
 

 
Fig. 10. Trial runs with multiple epochs. 

 
With the same configuration as WBCNet, several 
experiments were conducted with some 
predefined models like AlexNet, GoogleNet & 
Ciphar10 and it is observed that WBCNet 
achieves the highest accuracy of 97.4% with less 
training time and less computation resources. 
The comparison result of different models with 
WPCNet is given in Table 3. 

Table 3. Comparison of WPCNet with different models. 

Model Layers Training time (min) Validation accuracy (%) Test accuracy (%) 

GoogleNet 22 37 93.2 90 

Cifar10 05 06 87.6 83 

AlexNet 08 1477 91 89 

WPCNet 05 20 97.4 97 

The performance of WPCNet CNN model is 
evaluated by the help of the confusion matrix as 
shown in Figure 11.  
 

 
Fig. 11. The Confusion Matrix 

 
It is observed that this model is highly efficient 
for classification as almost all classifications 
made by this model are correct except four 
incorrect classifications. In all, 19 cutting 
particles were classified as cutting, 22 were 
classified as spherical particle, out of 20 fatigue 

particle 18 are classified as fatigue, out of total 16 
sliding particle 15 are classified as sliding and out 
of 24 rubbing particles, 23 are classified as 
rubbing particles. 

 
5.3 Live Detection of Wear Debris 
 
For the detection and successful classification, 
CNN model is integrated with cascade classifier 
so that once the wear debris is detected using 
trained cascade classifier it can use the WPCNet 
model to successfully classify it into different five 
categories. Cascade classifier is basically known 
for object detection purposes where lots of 
images of the object as positive image and image 
without object as negative image are provided to 
the cascade function for the training purpose. In 
this experiment, the Cascade-Trainer-GUI 
software is used to train the classifier where a 
total 506 particle images were provided as 
positive images with 100 percent of usages and 
1000 images without particles as negative images 
to get better detection. The other different 
parameters used for training in Cascade-Trainer-
GUI are shown below in Table 4.
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Fig. 12. Wear debris detection and classification. 

 
Table 4. Parameters used for training in Cascade-
Trainer-GUI. 

Parameters  Value 

Force positive sample count 1 

Number of stages 20 

Number of threads 5 

Acceptance ratio break value -1.0 

Sample width 24 

Sample height 24 

Feature type  HAAR 

HAAR Feature type  Basic 

Boost Type  CAB 

Minimal hit rate 0.9950000 

Maximum False alarm rate 0.5000000 

Weight Trim rate 0.9500000 

Maximal depth weak tree 1,0000000 

Maximal weak trees 100 

 
Upon the successful training of the cascade 
classifier, the trained model with .xml extension is 
generated which is then later used to integrate with 
the CNN model WPCNet so that the classification of 
the detected particle can be done successfully. The 
result of detection and classification of different 
wear debris are shown in Figure 12. 
 
The use of this model as an efficient method for 
continuous monitoring of gear wear particles in any 
industrial machinery is one potential practical 
implementation of the current research. All the 
problems encountered traditionally can be solved by 
the integrated technique of customized lightweight 
CNN model WPCNet with Cascade classifier. 
 
 
6. CONCLUSIONS 
 
In this research work, an integrated model of 
cascade classifier with light weight WPCNet CNN 

model is proposed to achieve the purpose of live 
detection and classification of wear particles with 
high accuracy. This model can be utilized to build 
a solution for continuous monitoring of gear wear 
particles in any industrial machinery. The 
integrated method of customized light weight 
CNN model WPCNet with Cascade classifier 
overcomes all the difficulties faced traditionally. 
It is observed that an accuracy of 97.4% is 
achieved by WPCnet model and this model is 
used to integrate with trained cascade classifier 
to detect and classify the wear debris particles 
accurately. The CNN model is more efficient than 
the traditional methods because it allows 
automation of the entire process by automatically 
extracting features from images by putting 
multiple filters on it. Conventional techniques 
require manual feature extraction, which makes 
the entire process laborious and inefficient. It is 
concluded on the basis of the results that WPCNet 
CNN integrated with cascade classifier is the most 
efficient classification model for the wear particle 
classification. This fulfils the aim of automating 
the complete process of detection and 
classification of wear particle in live scenario. 
 
 
7. FUTURE SCOPE 
 
The future objectives of the current work 
include the creation of a distinct cell with three 
to four cameras to take real time images of the 
of wear debris. These images would be 
processed to create a solid model of each 
particle which will then be combined to create 
a reconstructed worn-out gear pair model 
needed for the digital twin. Depending on the 
availability of sophisticated instrumentation 
and related software, the precise study course 
will be chosen. 
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