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 A B S T R A C T 

The detection of bearing defects while the machinery is in use is essential for 
predicting the incipient failure and thereby providing an opportunity to take 
remedial measures for preventing the costly downtime and ensuring the safe 
and efficient operation of rotating machinery. With the increasing availability 
of vibration sensor data and the development of machine learning techniques, 
the ML methods have become a popular approach for automated fault 
diagnosis in bearings. In this paper, an attempt has been made to detect the 
faults in the outer race of bearing using different ML algorithms. An 
experimental setup has been designed and fabricated to conduct experiments 
on healthy and faulty bearings and the vibration signals were captured. The 
captured vibration signals were directly employed as images for training the 
ML algorithms without the need for conducting the spectral analysis. Six 
machine learning algorithms, namely, Linear Regression (LR), Decision Tree 
(DTR), KNN Regression (KNNR), Random Forest Regression (RFR), 
Convolution Neural Network (CNN), Naive Bayes (NB) were separately 
applied to classify the location of defects within the outer race of the ball 
bearing. The accuracy table are used to find the best suitable algorithm for the 
predictions. The methodology includes data preprocessing techniques, 
network architectures, training strategies, and evaluation metrics. It has been 
established that the use of ML technique is very effective in detecting the 
bearing defects and CNN is able to achieve 100% accuracy. 
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1. INTRODUCTION 
 
Rolling contact bearings are essential components 
in many machines and equipment. They are used 
to support rotating shafts and allow for smooth 
and efficient operation. However, bearings can fail 
due to a variety of factors, including wear, 

corrosion, and fatigue. When a bearing fails, it can 
cause significant damage to the machine and lead 
to costly downtime. 
 
Early detection of bearing faults is essential to 
prevent catastrophic failures. Traditional 
methods for detecting bearing faults include 
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vibration analysis, oil analysis, and ultrasonic 
testing. However, these methods can be time-
consuming and labor-intensive, and they may not 
be able to detect all types of faults. 
 
Machine learning methods offer a promising 
alternative for detecting bearing faults. Machine 
learning algorithms can be trained on data from 
healthy and faulty bearings to learn to identify the 
patterns that are associated with different types 
of faults. This allows machine learning algorithms 
to detect faults more quickly and accurately than 
traditional methods. In one study by Upadhyay et 
al [1], an integrated model and data driven-based 
methodology for the diagnosis of bearing defect is 
utilized and statistical time domain features are 
calculated from the data to train the artificial 
neural network, support vector machine and 
decision tree. It was established that the 
integration of model and machine learning-based 
technique provides good diagnosis efficiency. 
Pandarakone et al [2] proposed a diagnostic 
method to detect the minor fault using SVM and 
DL algorithm. Delgado et al [3] proposed a novel 
diagnosis methodology applied to bearings faults 
using information in time-domain from the 
vibration data. Kumar et al [4] converted the 
acquired vibration signals into 2D greyscale 
images with continuous wavelet transform (CWT) 
and employed it in deep convolutional neural 
network to assess the defect severity. Fu et al [5] 
proposed a bearing fault diagnosis method based 
on wavelet denoising and machine learning. The 
wavelet denoising algorithm was used to reduce 
the noise and five machine learning models, 
including K-means clustering, decision tree, 
random forest, and support vector machine were 
evaluated to classify the bearing faults. Barai et al 
[6] highlighted the recent trends in research on 
the diagnosis of faults in bearing. It was surveyed 
that several vibration measurement and other 
signal processing methods were utilized for 
diagnosis of bearing faults such as Fast Fourier 
transform (FFT), wavelet packet transform 
(WPT), Short-time Fourier transform (STFT), 
Principal Components Analysis (PCA), continuous 
wavelet transforms (CWT), Ensemble Rapid 
Centroid Estimation (ERCE) etc. Samanta et al [7] 
compared the performance of bearing fault 
detection using three types of artificial neural 
networks (ANNs), namely, multilayer perceptron 
(MLP), radial basis function (RBF) network, and 
probabilistic neural network (PNN) from time-
domain vibration signals. 

Many studies in the past have been utilizing the 
traditional methods for detecting bearing faults 
which includes capturing of vibration signals 
followed by signal analysis [8-14]. The working 
condition of the bearings have a very significant 
effect on its performance and the generation of 
faults and its consequent propagation is greatly 
influenced by it, this issue has been addressed 
in many studies, but by using the traditional 
methods [15-23]. Several research studies have 
focused on the early fault detection of rolling 
contact bearings using the vibration signals 
[24-30]and machine learning methods [31]. 
 
In particular, machine learning methods have 
been shown to be effective in detecting faults in 
the outer race of rolling contact bearings. It is a 
common location for faults to occur, and early 
detection of outer race faults can help to 
prevent catastrophic failures. 
 
Machine learning methods are a powerful tool 
for detecting bearing faults. They can be used to 
improve the reliability of machines and 
equipment, and they can help to prevent costly 
downtime. 
 
The application of ML algorithms in detecting 
defects in rolling contact bearing using only the 
vibration signal data has not been attempted 
and is thus explored in the present work. The 
raw vibration data signal in time domain is 
used and ML techniques are applied to detect 
defects. 
 
 
2. EXPERIMENTAL SETUP  

 
 An experimental setup was designed and 
fabricated to carry out the experimental 
investigations. The schematic diagram of the 
experimental setup is shown in Figure 1. It 
consists of a shaft mounted on support bearings 
and connected to an electric motor through a 
flexible coupling as shown in Figure 2. A test 
bearing is mounted at the over hanged 
condition. The radial load is applied through 
dead weights. An accelerometer is attached on 
the outer race of the rolling contact to capture 
the vibration signals of healthy and faulty 
bearings. The NI-9250 data acquisition module 
is used for signal acquisition. The specifications 
of the test bearing are given in Table 1. 
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Fig. 1. Schematic of the experimental setup. 

 

 
Fig. 2. Experimental setup.  
 
Table 1 Bearing parameters [8]. 

Bearing type SKF BB1B420204  

Pitch diameter, Dp (mm) 32.94 

Ball diameter, db (mm)  8.7 

Diametral clearance, pd (μm)  10 

Number of balls, Z 7 

Angular spacing between balls, ϕs 
(deg) 

51.42 

OR fault frequency ratio, ϖo = fOR/fs 2.576 

Mass of ball, mb (kg) 0.0027 

Mass of OR and housing, mh (kg) 0.445+0.890 

Mass of IR and overhung shaft, ms (kg) 0.210+0.165 

Housing stiffness, kh (N m− 1) 1.451e+10 

Shaft stiffness, ks (N m− 1) 4.667e+8 

Housing damping, ch (N s m− 1) 769.78 

 

Shaft damping, cs (N s m− 1) 24.76 

Applied radial load, Fr (N) 100 

Shaft speed, Ns (rpm) 1500  

BPFO (theoretical) at Ns = 1500 rpm 64.38 

Table 2 Defect parameters [8]. 

Angular location of defect (degree) 20° to 40° in steps of 5° 

Length of defect 1 mm 

Depth of defect > hd, crit 

Radius of defect edge 0.01 mm 

 

 
Fig. 3. Defect in outer race [8]. 
 

The vibration signals acquired by the 
accelerometer for different locations of the defect in 
the outer race of the ball bearings is recorded and is 
given in figures 4 to 8. The Figure 4 depicts the 
acceleration signal acquired in the time domain for 
the outer race defect located at a span of 20°. 
 

 
Fig. 4. Outer race defect at a span of 20°. 
 

The Figure 5 depicts the acceleration signal 
acquired in the time domain for the outer race 
defect located at a span of 25°. 
 

 
Fig. 5. Outer race defect at a span of 25°. 
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The Figure 6 depicts the acceleration signal 
acquired in the time domain for the outer race 
defect located at a span of 30°. 
 

 
Fig. 6. Outer race defect at a span of 30° 
 

The Figure 7 depicts the acceleration signal 
acquired in the time domain for the outer race 
defect located at a span of 35°. 
 

 
Fig. 7. Outer race defect at a span of 35° 
 

The Figure 8 depicts the acceleration signal 
acquired in the time domain for the outer race 
defect located at a span of 40°. 
 

 
Fig. 8. Outer race defect at a span of 40°. 
 

The following methodology was adopted to 
implement the machine learning algorithms. 

3. METHODOLOGY  
 

The accelerometer was used to acquire the 
vibration data of healthy and faulty bearing. The 
local defects on the outer race of the rolling contact 
bearing were created at an angle of 20°, 25°, 30°, 35° 
and 40° from the load line. The acquired data from 
the vibration sensor was mix of signal and noise. It 
is required to de-noise the data for extracting the 
useful information. Six machine learning algorithms, 
namely, Linear Regression (LR), Decision Tree 
(DTR), KNN Regression (KNNR), Random Forest 
Regression (RFR), Convolution Neural Network 
(CNN), Naive Bayes (NB) were separately applied to 
classify the location of defects within the outer race 
of the ball bearing. The accuracy table are used to 
find the best suitable algorithm for the predictions. 
A brief description of the ML algorithms used are 
given below. 
 

3.1 Logistic regression 
 

Logistic Regression serves as a statistical 
technique for binary classification. In regression 
analysis, where the dependent variable is 
categorical (typically binary), and independent 
variables can be either continuous or categorical, 
logistic regression finds its application. Despite 
its name, its primary use is in classification tasks. 
 

To simplify, logistic regression models the 
probability of an input belonging to a specific 
class. The outcome transforms through the 
logistic function (sigmoid function), mapping 
input to a value between 0 and 1. This 
transformed outcome indicates the likelihood of 
input associating with a particular class. 
 

P(Y=1∣X)=1/(1+e−(β0+β1X1+β2X2+…+βnXn)) 
P(Y=1∣X) is the probability that the dependent 
variable Y is 1 given the input X. 
 

Coefficients β0, β1, …, βn derive from training data 
using techniques such as Maximum Likelihood 
Estimation (MLE). The logistic function confines 
output between 0 and 1, enabling probability 
estimation and classification. 
 

For classification, a threshold (e.g., 0.5) 
distinguishes inputs with predicted probabilities 
above from those below. Logistic Regression 
finds utility across medicine, economics, social 
sciences, and machine learning. Multi-class 
scenarios extend via multinomial logistic 
regression or one-vs-all approaches. 
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In the present work, LR is utilized to classify the 
different types of ball bearing defects and achieved 
accuracy of 82% which is shown in Figure 9. 
 
3.2 Decision tree 
 
The Decision tree, a popular machine learning 
algorithm, handles classification and regression. Its 
structure resembles a tree, where internal nodes 
denote feature-based decisions, branches indicate 
outcomes, and leaf nodes convey class labels 
(classification) or predicted values (regression). 
 
The Decision Tree process unfolds as follows: 
 
Feature selection: Optimal features derive from 
dataset using defined criteria. The goal is pure 
subsets regarding the target. For classification or 
regression, Gini impurity, entropy, or mean 
squared error guide. 
 
Splitting: Selected features segment data into 
subsets by value. Child nodes emerge from splits. 
 
Recursive steps: Process recurs as each child 
node repeats feature selection and splitting. 
Stopping occurs at criteria like depth or uniform 
class samples. 
 
Leaf node labels: Terminal nodes gain class 
labels (classification) or predicted values 
(regression) based on majority or average. 
 
Visualizing results showcases the root node atop 
branches to leaf nodes. Decision Trees mimic 
human decision-making. 
 
Overfitting risk motivates techniques such as 
pruning and ensemble methods (Random Forests, 
Gradient Boosting). In sum, Decision Trees prove 
versatile across domains like finance, healthcare, 
and marketing, performing tasks such as customer 
segmentation and medical diagnosis. 
 
To achieved better accuracy further DT is utilized 
for classification and shows results with 99.9% of 
accuracy which is shown in Figure 10. 
 
3.3 Naïve Bayes 
 
Naive Bayes, grounded in Bayes' theorem, is a  
probabilistic algorithm for classification. 
Simplicity, speed, and effectiveness characterize 
it, even with high-dimensional data. Naive 

acknowledges the assumption of feature 
independence given the class. Despite this 
simplification, Naive Bayes performs well. 
Naive Bayes operates as follows: 
 
Bayes' theorem: Core to Naive Bayes, Bayes' 
theorem calculates class posterior probability 
using likelihood, prior probability, and evidence 
probability. 
 
Independence assumption: Naive Bayes 
simplifies by assuming feature independence 
within the class. Likelihood calculates via product 
of individual feature probabilities given the class. 
 
Class prediction: For classification, Naive Bayes 
computes posterior probabilities for classes, 
predicting the class with the highest probability. 
Variants include Multinomial Naive Bayes 
(text), Gaussian Naive Bayes (continuous 
features), and Bernoulli Naive Bayes (binary 
data). While effective for quick predictions, it 
might not outperform complex models for 
correlated features or independence violations. 
With utilization of Gaussian Naïve Bayes 
algorithm different ball bearing defects are 
classified with accuracy of 79.1% which is 
shown in Figure 11. 
 
3.4 KNN 
 
K-Nearest Neighbors (KNN) stands as an intuitive 
algorithm for classification and regression. It 
relies on nearby training data points. 
 
The KNN process unfolds as: 
 
Training phase: Data memorization occurs 
during training. 
 
Classification phase: For classification, KNN 
examines k nearest neighbors, determining class 
by majority vote. 
 
Regression phase: For regression, KNN computes 
average of k nearest neighbors' target values. 
 
Considerations include choosing k, distance 
metric, feature scaling, and computational cost. 
KNN is a starting point for simple tasks. Complex 
data or imbalances might affect performance. In 

the present work KNN classified different ball 
bearing defect with 94.9% of accuracy which is 
shown in Figure 12. 
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3.5 Random forest 
 
Random Forest combines decision trees for 
robustness. It handles classification and 
regression, combating overfitting. 
 
The Random Forest process involves: 
 
Bootstrap aggregating (bagging): Multiple 
trees arise via bagging, random training data 
subsets per tree reduce overfitting. 
 
Feature randomness: Random subsets of 
features per tree diminish dominance. 
 
Voting or averaging: Classification outcomes 
vote, regression averages. 
 
Random Forest benefits include overfitting 
reduction, high accuracy, feature importance, 
handling missing values, and nonlinearity 
capture. Complexity and interpretability 
concerns exist. Applied broadly, Random Forest 
excels across tasks which is shown in Figure 13. 
 
3.6 CNN 
 
CNNs excel in visual data analysis. Convolution, 
pooling, and fully connected layers constitute its 
core. 
 
CNN components include: 
 
Convolutional Layers: Convolution filters detect 
edges, textures, shapes. 
 
Pooling Layers: Down sampled feature maps. 
 
Activation Functions: Nonlinearity introduction. 
 
Fully Connected Layers: Merge learned features 
for predictions. 
 
Flattening: Preceding fully connected layers, 1D 
transformation. 
 
CNN advantages encompass hierarchical 
learning, translation invariance, parameter 
sharing, accuracy, data augmentation. CNNs 
revolutionize domains like medicine, style 
transfer, and extend to non-visual tasks. With the 
advantage of automatic feature extraction from 
the sample images CNN achieved 100% accuracy 
in classifying different ball bearing defects with 

the help of signal images utilized to trained the 
CNN model and the accuracy which is achieved by 
CNN model is respectively represented in Figure 
14, 15 and 16. 
 
The Bearing Defect is estimated by following the 
below mentioned pre-processing steps. 
 
i) The entire datasets are divided into training 

and testing set in the ratio of 80:20 (Table 3). 
 

Table 3. Training and Testing Set of 3 different datasets 

Dataset Training Set Testing Set 

1 307200 76800 

 
ii) After dividing the training set, the training 

and testing input parameters are separately 
standardized by subtracting the mean and 
scaling each feature to unit variance 
considering the standard normal 
distribution.  

 
iii) Then the features were fed to into the 

different machine learning algorithms to 
predict the location of the defect in the outer 
race of the ball bearing. 

 
iv) In the next step, different machine leaning 

regression algorithms were applied to 
predict the defects. The hyper parameters of 
the different models are presented below in 
the Table 4. 

 
Table 4. Hyper parameter of the different machine 
learning models. 

Model Hyper parameters 

LR - 

DTR CART Algorithm 

KNNR K =5 

RFR bootstrap=False, max_features=1, 
n_estimators=50 

CNN  3 Hidden layer with Relu activation function 

 Each Hidden Layer contains 10 hidden 
neurons 

 Batch Size =32 

 Epoch = 100 

 Adam Optimiser 

NB Gaussian 

 
 

4. RESULT AND DISCUSSIONS 
 
The different machine learning algorithms were 
applied and the screenshots of the output of these 
algorithms are given below: 
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Fig. 9. Output of logistic regression algorithm. 

 
The Logistic Regression model is tested in the 
conducted experiment and it is observed that it 
achieved accuracy of 82.2 % and the predictive 
output is not every time correct, it is not the best 
fit model for this experimental environment.  
 

 
Fig. 10. Output of decision tree algorithm. 

 
With outstanding accuracy of 99% and with 
every time correct prediction, its show that 
decision tree is one of the best fit model and can 
be utilized as a solution for this kind of problems. 
 

 
Fig. 11. Output of Naïve Bayes algorithm. 

 
With least accuracy of 79.1 % Naïve Bayes shows 
its unsuitability for the prediction of different 
defects with this kind of data distribution. 
 

 
Fig. 12. Output of KNN algorithm. 

KNN perform well in the experiment with 
accuracy of 94.4% and its predictive output is 
also correct most of the time but not always. 
This shows that it can be utilized for this 
application with less precision. 
 

 

Fig. 13. Output of random forest algorithm. 

 
Similar to KNN model, the RF model too perform 
well with good accuracy and prediction but with 
less precision. 
 

 

Fig. 14. Output of CNN algorithm. 

 
With the higest accuracy of 100% CNN model 
proves that it is capable of automating the 
prediction system by automatic extracting the 
important features from input data and it is 
best fit model for prediction in this kind of 
environment. 

 
The loss and accuracy vs epochs curves are 
plotted and the same are given below: 
 

 

Fig. 15. The loss vs epochs curve. 
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Fig. 16. The Accuracy vs epochs curve. 
 
The results are summarized in Table 5. 

 
Table 5. Results. 

Algorithm  Predicted 
output  

Dataset  Accuracy  

LR  Bearing 
Fault  Dataset 

for 20deg, 
25deg, 
30deg 
35deg, 
40deg 

82%  

DTR  99.9%  

KNNR  94.9%  

RFR  94.4%  

CNN 100%  

Naive bayes  79.1%  

 
Table 5 represents a comparison between different 
models utilized in the experiment based on their 
accuracy. It is observed from the results that CNN 
achieves 100% accuracy in detecting the defects. 
Here, LR abbreviation is utilized for Logistic 
Regression, DTR for Decision Tree regression, 
KNNR for K-Nearest Neighbor Regression, RFR for 
Random Forest Regression and CNN for 
Convolutional Neural Network respectively. 
 
 
5. CONCLUSION 
 
It has been established that different ML 
algorithms can be utilized effectively in detecting 
the faults in the outer race of the rolling contact 
bearing without the need to conduct the spectral 
analysis of the acquired vibration signals. The 
captured vibration signals were directly employed 
as images for training the ML algorithms obviating 
the need of spectral analysis. These methods offer 
a very effective data driven way to detect faults in 
the outer race of rolling contact bearings. Linear 
Regression (LR), Decision Tree (DTR), KNN 
Regression (KNNR), Random Forest Regression 
(RFR), Convolution Neural Network (CNN) and 
Naive Bayes (NB) methods were separately 
applied to classify the location of defects within 

the outer race of the ball bearing. The existing 
model are optimized and customized with 
different optimizing parameters to achieve 
improved accuracy. It is established that the CNN 
algorithm is able to detect the fault with 100% 
accuracy. It will be useful in predicting the 
incipient failure of rolling contact bearing and will 
prevent costly downtime.  
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