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 A B S T R A C T 

The effect of couple stresses on static and dynamic characteristics of 
exponential slider bearing in the presence of magnetic field considering 
squeeze action is theoretically analyzed in this paper. The modified 
magnetohydrodynamic couple stress Reynolds type equation is derived on 
the basis of Stokes couple stress model and closed form expressions are 
obtained for static and dynamic character coefficients. Comparing with 
bearing lubricated with non-conducting Newtonian lubricants, the 
magnetohydrodynamic couple stress lubrication provides the higher 
steady load carrying capacity, dynamic stiffness and damping coefficient. 
The exponential bearing shows higher efficiency for small film thickness 
at higher value of couple stress parameter and Hartmann number. 
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1. INTRODUCTION  
 
Magnetohydrodynamics (MHD) is the study of 
dynamics of the flow of electrically conducting 
fluid in presence of a magnetic field. Many 
researchers investigated the effects of MHD on 
the characteristics of bearings such as slider 
bearing by Snyder [1], inclined slider bearing 
and finite step slider bearing by Hughes [2,3], 
parallel plate slider bearing and journal bearing 
by Kuzma [4,5] and finite rectangular plates by 
Lin [6]. These studies concluded that the 
application of magnetic field improves on 
bearings performance. All these studies are on 
classical hydrodynamic lubrication and lubricant 
assumed is to be Newtonian fluid which is not 
satisfactory assumption for practical application 

in engineering field. Owing to importance of 
Newtonian lubricants blended with 
microstructure additives many theories were 
developed to describe these fluids. The simplest 
theory among these was developed by Stokes 
[7]. The Stokes theory allows for polar effects 
such as the presence of couple stresses, body 
couples and non-symmetric stress tensors. On 
the basis of Stokes theory, many researchers 
studied effect of couple stress on bearing 
characteristics such as slider bearing by 
Ramanaiah and Sarkar [8], short journal bearing 
by Ayyappa et al. [9], circular stepped plates by 
Naduvinamani and Siddangouda [10] and long 
partial journal bearing by Lin [11]. According to 
the results obtained, the use of non-Newtonian 
fluid enhances the bearing performance 
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characteristics. Siddangouda [12] studied the 
effect of non-Newtonian micropolar fluid on the 
characteristics of parallel stepped plates.  
 
On the basis of results obtained in the studies of 
MHD effect and couple stress effect, the 
researchers are devoted towards the study of 
bearing performance with the combined effect of 
MHD and couple stress. The combined effects of 
couple stress and MHD on bearing 
characteristics are studied by Das [13], circular 
stepped plates by Naduvinamani et al. [14] and 
different types of finite plates by Fathima et al. 
[15]. The results obtained in these studies 
showed an increase in load carrying capacity of 
bearings as the strength of applied magnetic 
field increases and also with increase in the 
value of couple stress parameter. The study of 
static and dynamic characteristics of bearing 
plays an important role in the consideration of 
geometry of bearing. Basic reference for bearing 
design is provided by the static characteristics 
and stability behaviour of bearing is predicted 
by the dynamic characteristics. Effect of non-
Newtonian fluid on Static characteristics of 
Journal bearings are studied by Javorova et al. 
[16] and pivoted curve bearing by Singh et al. 
[17]. Dynamic characteristics of plane inclined 
slider bearing in the presence of magnetic field 
are studied by Lin et al. [18] and it is concluded 
that applied magnetic field enhances the 
dynamic characteristics of bearings. Lin and 
Hung [19] studied the dynamic characteristics of 
exponential bearing. The effect of MHD on 
dynamic characteristics of exponential slider 
bearings is studied by Lin and Lu [20]. Recently 
static and dynamic characteristics of MHD 
couple stress plane and parabolic slider bearings 
is studied by Naduvinamani et al. [21].   
 
In the present paper, the effect of couple stress 
on static and dynamic characteristics of 
exponential slider bearing in the presence of 
applied magnetic field is analyzed. The results 
obtained are compared with that of non-
magnetic case by Lin and Hung [19] and the 
Newtonian case obtained by Lin and Lu [20].  
 
 
2. MATHEMATICAL FORMULATION 
 
The geometry of exponential slider bearing of 
length L is shown in Fig. 1. Conducting couple 
stress fluid is considered in the film region. The 

lower bearing surface is moving with a velocity 
U in the x-direction and the upper surface 
( y h ) has a squeezing effect /h t  . In the 

direction perpendicular to the bearing, a 
uniform transverse magnetic field B0 is applied. 
The following realistic assumptions are made in 
the simplification of constitutive equations: 

1. The fluid film is thin. 

2. Inertial forces are negligible in comparison 
with viscous forces. 

3. The body couples and body forces are 
negligible except Lorentz force. 

4. Induced magnetic field is small as compared 
to externally applied magnetic field. 

5. The bearing surfaces are perfect insulators 
and there is no external circuit in the fluid. 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 1. Geometry of exponential slider bearing. 

 
Under these assumptions, the constitutive 
equations for couple stress fluid in the presence 
of applied magnetic field reduce to (Das[13]): 
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where µ is the lubricant viscosity; η is material 
constant responsible for couple stresses; σ is the 
conductivity of the lubricant; p is the film 
pressure; and u, v are the velocity components in 
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the x and y directions respectively; zE  is the 

component of electric field in z-direction. The 
relevant boundary conditions for velocity 
components are: 

    At y h ;     0u  ,   
2

2
0

u

y





,    

h
v

t





;                (5) 

   At 0y  ;     u U ,  
2

2
0

u

y





,     0v  ;               (6) 

 
 
3. SOLUTION OF THE PROBLEM 
 
The solution of equation (1) subject to the 
boundary conditions given by equations (5) and 
(6) under condition (4) is obtained as: 
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where  
1/ 2

0 /msM B h    is the Hartmann 

number and  
1/ 2

/l    is the couple stress 

parameter.  The relations in above expressions 
are provided in Appendix-A. 
 
With the use of boundary conditions (5), (6) and 
the expression (7) for u, the integration of 
continuity equation (3) over the film thickness 
gives the modified Reynolds equation in the form: 
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, 

 2 1 1 cot     ,   2 1 1 cot     , 
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The modified Reynolds type equation (9) is 
applicable to one-dimensional slider bearings 
lubricated with couple stress fluid in the 
presence of transverse magnetic field with the 
squeezing effect /h t  . The thickness of fluid 
film in the flow region is given by ( , )h h x t . In 

the present study, the exponential slider bearing 
is considered and its geometrical configuration 
is shown in Fig. 1. The mathematical function for 
the film thickness is given by: 

         1( )
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where ( )mh t  is the minimum film thickness, 

1( ) ( )mh t d h t   is the inlet film thickness and d is 

the difference between inlet and outlet film 
thicknesses. 
 
Defining the non-dimensional quantities, 
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dimensional Reynolds type equation is obtained as:  
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 being the profile parameter. 

The pressure boundary conditions are given by:  

             0p   at  0x   and 1x             (16) 

With the use of pressure boundary conditions, the 
twice integration of the non-dimensional 
Reynolds type equation (12) with respect to x  
gives the expression for film pressure in the form:  
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where /mV dh dt  represents squeezing 

velocity in the non-dimensional form: 
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where 1( )AM mh  and 1( )BM mh  are given as follows: 
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By integrating the non-dimensional film 
pressure over the film region non-dimensional 
film force is obtained in the form: 
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where F is the film force and substituting the 
value of non-dimensional pressure expression 
from equation (17) in equation (23), the 
expression for F  is obtained as: 
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where Ag  and Bg  are determined by the 

following double integrals: 
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3.1 Steady state characteristics 
 
Let the non-dimensional minimum film height 
be constant and the non-dimensional squeezing 
velocity be zero. From equations (17) and (24), 
the expressions for the steady film pressure and 
the steady load carrying capacity in non-
dimensional for are obtained as: 
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3.2 Dynamic characteristics 
 
The partial derivative of film force in non-
dimensional form with respect to minimum film 
thickness in non-dimensional form under steady 
state gives dynamic stiffness coefficient in non-
dimensional form as: 
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where subscript s denotes the steady state. 
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The partial derivative of film force in non-
dimensional form with respect to squeezing 
velocity in non-dimensional form under steady 
state gives the dynamic damping coefficient in 
non-dimensional form as: 

 
1

1

12

ln 1

AM
d A B

BMs s

F
C g g

V



 

  
       

   
 (35) 

 
 
4. RESULTS AND DISCUSSION 
 
The numerical integration of integrals appearing 
in the expressions for film force, dynamic 
stiffness and damping coefficients are performed 
by using the quadrature formula. The Hartmann 
number M  characterizes the effect of externally 
applied magnetic field and the parameter 

l characterizes the effect of couple stresses. The 
static and dynamic characteristics of exponential 
slider bearing lubricated with couple stress fluid 
in the presence of applied transverse magnetic 
field is analyzed in the present paper. The results 
of Lin and Lu [20] can be recovered in the limiting 

case as 0l   for the conducting Newtonian case. 
While 0M   the results of Lin and Hung [19] can 
be recovered from the present analysis. The flow 
chart for the computation of sp , sW , dS and dC  is 

shown in Fig. 2.   
 
4.1 Steady film pressure 
 
The variation of non-dimensional film pressure sp  

with the non-dimensional coordinate x  for 
different values of Hartmann number M  and 

couple stress parameter l  with 1  , 1msh   and 

0.4l   is shown in Fig. 3. Compared to Newtonian 

case ( 0l  ), the effect of couple stress is to 
increase the values of sp  with x . It is observed 

that the application of magnetic field increases the 
steady state pressure even bearings are lubricated 
with couple stress fluid compared to non-magnetic 
case. The reason for the increase in the pressure is 
the retention of large amount of lubricant in the 
film region due to reduced velocity of lubricant on 
the application the magnetic field. 
 

 
Fig. 2. Flow chart of computation. 

 
Figure 4 depicts the variation of non-dimensional 
steady maximum film pressure smp  with profile 

parameter   for different values of M  and l  

under 1msh  . It is found that the effect of couple 

stresses is to increase the values of smp  as 

compared to Newtonian case. The applied 
magnetic field also increases the value of smp  even 

bearing is lubricated with couple stress fluid. The 
variation of smp  with non-dimensional steady 

minimum film thickness msh  for different values 

M  and l  under 1   is shown in Fig. 5. It is 
observed that the value of smp  increases for the 

couple stress fluid as compared to Newtonian case. 
The value of smp  increases with decrease in the 

value of  msh  which implies that the maximum 

pressure is generated in the film region for lower 
film thickness. 
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Fig. 3. Non-dimensional steady film pressure sp  with x  for different values of M and l with 1  , 1msh  . 

  

 
Fig. 4.  Non-dimensional steady maximum film pressure smp  with  for different values of  M  and l  with 1msh  . 

 
4.2 Steady load carrying capacity 
 
The variation of non-dimensional steady load 
carrying capacity sW  with profile parameter   

for different values of M  and l  under 1msh   is 

shown in Fig. 6. Both the application of magnetic 
field and effect of couple stresses increase the 
value of sW  as compared to non-magnetic and 

Newtonian case. The value of sW  increases with 

increases in the value of   till it attains 
maximum and thereafter it decreases.  It is 
observed that in both Newtonian and non-
magnetic cases the steady load carrying capacity 
decreases for higher value of   but this trend 
changes with presence application of external 
magnetic field.  
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Fig. 5.  Non-dimensional steady maximum film pressure smp  with msh  for different values of  M  and l  with 1  . 

 

 

Fig. 6. Non-dimensional steady load carrying capacity sW  with  for different values of  M  and l  with 1msh  . 

 
The variation of sW  with non-dimensional 

steady minimum film thickness msh  for 

different values M  and l  under 1   is shown 
in Fig. 7. The presence of couple stresses and 
external applied magnetic field enhances the 
steady load carrying capacity irrespective of 
film thickness. The load carrying capacity 

increases due to the increase in pressure as the 
result of reduced velocity of lubricant on the 
application magnetic field.  With the decrease 

in the value of msh , the increase in the value of 

sW  is observed and for lower film thickness 

maximum value of sW  is obtained. 
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Fig. 7. Non-dimensional steady load carrying capacity sW  with msh  for different values of  M  and l  with 1  . 

 

 
Fig. 8. Non-dimensional dynamic stiffness coefficient dS  with   for different values of M  and l  with 1msh  . 

 

4.3 Dynamic stiffness coefficient 
 
The variation of non-dimensional dynamic 
stiffness coefficient dS  with profile parameter   

for different values M  and l  under 1msh   is 

shown in Fig. 8. The value of dS  is to increase 

with increase in the values of l  and M  as 
compared to Newtonian and non-magnetic 
cases. The value of dS  increases with increase in 

  until it attain maximum and thereafter it 

decreases. The variation of dS  with non-

dimensional steady minimum film thickness msh  

for different values M  and l  under 1   is 
shown in Fig. 9. The application of magnetic field 
and effect of couple stresses both increases the 
value of dS  as compared non-magnetic case and 

Newtonian cases. The value of dS  increases with 

decrease in the value of msh  and the maximum 

value of  dS  is obtained at lower value of film 

thickness. It is found that the effect of magnetic 
field is less compared to effect of couple stress in 
increasing the value of dS . 
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Fig. 9. Non-dimensional dynamic stiffness coefficient dS  with msh  for different values of  M  and l  with 1  . 

 

 
Fig. 10. Non-dimensional dynamic damping coefficient dC  with   for different values of  M  and l  with 1msh  . 

 
4.4 Dynamic damping coefficient 
 
The variation of non-dimensional dynamic 
damping coefficient dC  with profile parameter 

  for different values M  and l  under 1msh   is 

shown in Figure 10. It is found that the value of 

dC  increases with increases in the value of l  

and M  as compared to Newtonian and non-

magnetic case. The value of dC  increases with 

decrease in the value of  . The variation of dC  

with non-dimensional msh  for different values of 

M  and l  under 1   is shown in Fig. 11. It is 

observed that the increase in values of l  and M  

increases the value of dC  compared to 

Newtonian and non-magnetic cases. 
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Fig. 11. Non-dimensional dynamic damping coefficient dC  with msh  for different values of  M  and l  with 1  . 

 
Table 1. Design example of slider bearing lubricated with couple stress fluid in presence of magnetic field 
considering squeezing effect irrespective of the bearing shape. 

Physical quantity Symbol Value of Physical quantity 

Length of the bearing L  
11.0 10 m

 

Inlet film thickness 1h  
4(1.5,2.0,2.5,3.0,3.5) 10 m

 

Outlet film thickness msh
 

41.0 10 m
 

Profile parameter   0.5,1.0,1.5,2.0,2.5
 

Electrical conductivity   
61.07 10 /mho m

 

Lubricant viscosity 
 

31.55 10 .Pa s
 

Applied magnetic field 0B
 

20,0.95,1.90 /Wb m
 

Couple stress material constant 
 

13(0,0.3875,1.55,3.4875,6.2) 10 Ns
 

 
4.5 Design example 
 
A design example for exponential slider bearing 
lubricated with couple stress fluid in presence of 
transverse magnetic field is presented for the 
use of this work in the bearing design by 
engineers with the physical quantities whose 
values are given in Table 1. For these considered 
physical quantities the values of couple stress 
parameter and Hartmann number are obtained 

as 0, 0.1, 0.2, 0.3, 0.4l   and 0, 2.5,5M   

respectively. These numerical values are so 
chosen to cover all the three cases in the 
equation (13). Further, the values of steady load 
carrying capacity, dynamic stiffness coefficient 
and dynamic damping coefficient are obtained 
using the expressions obtained in the previous 

section with considered values of physical 
quantities and are given in Tables 2, 3 and 4 
respectively. These values are useful for 
engineers in the designing of bearings. 
 
 
5. CONCLUSION  
 
The modified Reynolds type equation is 
obtained to study the effect of couple stresses 
on static and dynamic characteristics of 
exponential slider bearing in the presence of 
magnetic field. The effects of couple stresses 
and the applied transverse magnetic field is to 
increase the steady film pressure, the steady 
load carrying capacity, the dynamic stiffness 
coefficient and dynamic damping coefficient as 
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compared to the corresponding Newtonian 
case and the non-magnetic case respectively. 
Hence the exponential slider bearing 
lubricated with the couple stress fluid in the 

presence of applied magnetic field provides 
improved efficiency with larger couple stress 
parameter and Hartmann number for smaller 
values of profile parameter. 

 

Table 2.  Values for non-dimensional steady state load carrying capacity sW  with 1msh  .  

M    

Lin and 
Hung[19] 

Lin and 
Lu[20] 

Present Analysis 

0l   0l   0l   0 1.l   0 2.l   0 3.l   0 4.l   

0 

0.5 0.13 0.1320 0.1320 0.1345 0.1416 0.1530 0.1687 

1.0 0.16 0.1622 0.1622 0.1647 0.1715 0.1825 0.1974 

1.5 0.16 0.1644 0.1644 0.1665 0.1724 0.1818 0.1944 

2.0 0.15 0.1582 0.1582 0.1600 0.1650 0.1730 0.1836 

2.5 0.14 0.1496 0.1496 0.1512 0.1555 0.1626 0.1715 

3.0 0.14 0.1409 0.1409 0.1422 0.1460 0.1520 0.1601 

2.5 

0.5 - 0.1525 0.1525 0.1557 0.1640 0.1764 0.1929 

1.0 - 0.1980 0.1980 0.2015 0.2104 0.2234 0.2403 

1.5 - 0.2119 0.2119 0.2153 0.2237 0.2360 0.2515 

2.0 - 0.2144 0.2144 0.2176 0.2255 0.2369 0.2511 

2.5 - 0.2124 0.2124 0.2154 0.2228 0.2334 0.2466 

3.0 - 0.2085 0.2085 0.2114 0.2184 0.2283 0.2406 

5 

0.5 - 0.2012 0.2012 0.2077 0.2221 0.2383 0.2585 

1.0 - 0.2752 0.2752 0.2836 0.3006 0.3218 0.3461 

1.5 - 0.3061 0.3061 0.3151 0.3331 0.3554 0.3807 

2.0 - 0.3188 0.3188 0.3279 0.34611 0.3685 0.3937 

2.5 - 0.3228 0.3228 0.3318 0.3498 0.3719 0.3966 

3.0 - 0.3224 0.3223 0.3312 0.3488 0.3704 0.3946 

 

Table 3. Values for non-dimensional dynamic stiffness coefficient dS  with 1msh  . 

M    

Lin and 
Hung[19] 

Lin and 
Lu[20] 

Present Analysis 

0l   0l   0l   0 1.l   0 2.l   0 3.l   0 4.l   

0 

0.5 0.26 0.2639 0.2639 0.2738 0.3017 0.3467 0.4085 

1.0 0.32 0.3244 0.3244 0.3340 0.3610 0.4038 0.4620 

1.5 0.33 0.3289 0.3289 0.3372 0.3602 0.3967 0.4457 

2.0 0.32 0.3164 0.3163 0.3234 0.3431 0.3740 0.4152 

2.5 0.30 0.2992 0.2992 0.3053 0.3223 0.3489 0.3841 

3.0 0.28 0.2817 0.2817 0.2871 0.3020 0.3252 0.3560 

2.5 

0.5 - 0.2668 0.2668 0.2776 0.3061 0.3512 0.4128 

1.0 - 0.3321 0.3321 0.3431 0.3718 0.4158 0.4747 

1.5 - 0.3425 0.3425 0.3524 0.3782 0.4171 0.4680 

2.0 - 0.3360 0.3360 0.3450 0.3680 0.4023 0.4467 

2.5 - 0.3245 0.3245 0.3326 0.3534 0.3842 0.4235 

3.0 - 0.3120 0.3120 0.3194 0.3384 0.3664 0.4019 

5 

0.5 - 0.2894 0.2895 0.3036 0.3350 0.3800 0.4402 

1.0 - 0.3781 0.3781 0.3944 0.4301 0.4794 0.5419 

1.5 - 0.4073 0.4073 0.4238 0.4595 0.5080 0.5683 

2.0 - 0.4146 0.4146 0.4307 0.4652 0.5118 0.5693 

2.5 - 0.4127 0.4127 0.4281 0.4612 0.5056 0.5602 

3.0 - 0.4066 0.4066 0.4214 0.4531 0.4954 0.5472 
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Table 4.  Values for non-dimensional dynamic damping coefficient dC  with 1msh  . 

M    

Lin and 
Hung[19] 

Lin and 
Lu[20] 

Present Analysis 

0l   0l   0l   0 1.l   0 2.l   0 3.l   0 4.l   

0 

0.5 0.65 0.6509 0.6509 0.6633 0.6984 0.7548 0.8321 

1.0 0.47 0.4681 0.4680 0.4751 0.4949 0.5266 0.5695 

1.5 0.36 0.3589 0.3589 0.3635 0.3764 0.3968 0.4244 

2.0 0.29 0.2880 0.2879 0.2912 0.3004 0.3149 0.3343 

2.5 0.24 0.2389 0.2388 0.2413 0.2483 0.2592 0.2738 

3.0 0.20 0.2032 0.2032 0.2052 0.2107 0.2194 0.2309 

2.5 

0.5 - 0.7520 0.7520 0.7680 0.8088 0.8703 0.9516 

1.0 - 0.5712 0.5712 0.5814 0.6071 0.6447 0.6932 

1.5 - 0.4625 0.4625 0.4699 0.4883 0.5150 0.5489 

2.0 - 0.3903 0.3903 0.3962 0.4106 0.4312 0.4572 

2.5 - 0.3391 0.3391 0.3439 0.3558 0.3726 0.3937 

3.0 - 0.3008 0.3008 0.3050 0.3150 0.3293 0.3471 

5 

0.5 - 0.9925 0.9924 1.0247 1.0912 1.1756 1.2754 

1.0 - 0.7942 0.7942 0.8183 0.8674 0.9284 0.9986 

1.5 - 0.6682 0.6682 0.6877 0.7271 0.7758 0.8310 

2.0 - 0.5804 0.5804 0.5969 0.6300 0.6708 0.7168 

2.5 - 0.5154 0.5153 0.5297 0.5585 0.5937 0.6332 

3.0 - 0.4650 0.4650 0.4778 0.5033 0.5344 0.5692 

 
 

Nomenclature 
 

0B  applied magnetic field 

dC  non-dimensional dynamic damping 

coefficient 

d  difference between the inlet and outlet 
film thickness 

zE  induced electric field in the z - direction 

F , F  film force, 
2

2
0

msFh
F

UL B
   

( , )h x t  film thickness  

h  non-dimensional film thickness, 

( , ) ( , ) / msh x t h x t h  

( )mh t  minimum squeezing film thickness 

( )mh t  non-dimensional minimum squeezing 

film thickness ( ) ( ) /m m msh t h t h  

msh  steady state reference minimum film 

thickness at outlet 

1h  inlet film thickness 

L length of the bearing 

l  couple stress parameter 

l  non-dimensional couple stress 

parameter, 2 / msl l h  

M  Hartmann number,  
1/ 2

0 /msM B h    

p  film pressure 

sp  steady film pressure 

p  non-dimensional film pressure, 
2 /msp ph UL  

sp  non-dimensional steady film pressure, 
2 /s s msp p h UL  

smp  non-dimensional steady maximum film 

pressure 

dS  non-dimensional dynamic damping 

coefficient 

,t t  time, /t Ut L  

U sliding velocity of lower part 

V  non-dimensional squeezing velocity, 

/mV dh dt  

u, v velocity components in x and y directions 
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sW  steady load carrying capacity 

sW  non-dimensional steady load carrying 

capacity,  

x, y Cartesian coordinates 

x  non-dimensional coordinate /x x L  

  profile parameter / msd h   

  material constant responsible for couple 

stress parameter 

  lubricant viscosity 

  conductivity of the lubricant 
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