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 A B S T R A C T 

Multi-objective optimization requires computing the best trade-off 
between two or more conflicting objectives. The present study applies 
multi-objective optimization technique to the turning of AISI 1040 steel 
using Al2O3 nano particles with minimum quantity lubrication (MQL) 
technique for cutting force (CF), surface roughness (SR) and temperature 
(CT) using genetic algorithm. Central composite face-centered design 
with five factors, namely volume concentration(vol.c) of nano particles, 
MQL flow rate, cutting speed, feed rate and depth of cut (DOC) at three 
levels are used for experiments. From the developed regression model, it is 
found that speed, feed and DOC are the primary factors effecting the CF 
whereas MQL flow rate, speed and DOC are the primary factors effecting 
the SR and cutting temperature is predominantly affected by MQL flow 
rate, speed, feed rate and DOC. Based on the mathematical models, multi-
objective optimization of process parameters has been performed with 
genetic algorithm (GA) technique. A set of confirmation experiments were 
conducted for randomly selected trials of pareto solutions obtained from 
multi-objective GA to validate the optimum values. An error percentage of 
4.6%, 3.7% and 4.9% respectively for CF, SR and CT shows that the 
predicted optimum values are justified with the confirmation result. 
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1. INTRODUCTION  
 
Manufacturing processes typically consume 
many natural resources that are extracted from 
the earth. Reliability of the product directly 
influences the amount of natural resources 
consumed during manufacturing. Muhammad et 
al. [1] concluded that vegetable oils have more 

benefits while using as lubricant for machining 
purposes. For ecologically sustainable 
manufacturing, the design and reliability of the 
product is highly desirable and is increasing in 
complexity as the products themselves are 
becoming complex. In this background most of 
the industries are aiming to produce highly 
complex components without compromising on 
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safety and quality. Cutting temperature (CT), 
cutting force (CF) and surface roughness (SR) 
are some of the important responses in any 
machining operation which determine the 
quality of the product. Increase in these 
responses leads to high distortion and power 
consumption, reduces dimensional accuracy, 
cutting tool performance and product quality. 
Cutting fluid in any machining operation is used 
to reduce friction, to fairly reduce the workpiece 
temperature and to throw away chips. The CF 
and SR are reduced with the use of cutting fluid 
which also secures the surface of machining 
from corrosion. Though cutting fluids have 
number of advantages they are also 
accompanied by number of drawbacks. Cost and 
disposal of cutting fluid are the major challenges 
in the application of cutting fluid. In order to 
overcome these disadvantages, Sreejith et al. [2] 
conducted dry machining. However, many 
researchers are working on minimum quantity 
lubrication (MQL). MQL is a technique in which 
the cutting fluid is broken into small finer 
particles with the compressed air called aerosol 
in the system and this mixture of fluid and air is 
applied in the cutting zone under high pressure 
in the form of jet. Yusof et al. [3] in their work 
proved that MQL has more benefits compared to 
dry machining. The study made by  Dhar et al. 
[4] indicated that the implementation of near 
dry lubrication resulted in reduction of CF and 
CT, appropriate tool-chip interaction, minimized 
tool wears, SR, and dimensional deviation.  
Masoudi et al. [5] concluded that the orientation 
of nozzle is an important factor effecting the 
surface roughness and cutting force. Better 
cutting efficiency achieved during the use of 
MQL technique is due to the less strain used to 
break up the chips because of the brittle nature 
of the lubricant, thus causing low friction.  Dixit 
U S et al. [6] suggested a chip removal system 
and fire and explosion system in machining of 
light metal alloys like magnesium while using 
MQL technique. In order to further improve the 
machining process, many researchers are 
working on nano cutting fluids along with MQL 
technique. Nano cutting fluids are the fluids 
formed by the colloidal dispersion of nano 
particles in base fluid. The inclusion of nano 
particles in base fluid increases the thermal 
conductivity thus enhancing the heat transfer 
capacity of the base fluid. Hasan et al. [7] used 
nano fluids for enhancing the heat transfer 
capacity in CPU. The authors measured the 

Nusselts number and Reynolds number for Al2O3 
nano fluid and concluded the increase in both 
than convention fluid (water). Khan et al. [8] 
developed mathematical models for predicting 
surface roughness and cutting temperature 
under MQL and nano MQL (Al2O3) machining 
conditions during milling of D2 steel. The 
authors showed that nano fluid MQL improved 
the surface roughness and reduced cutting 
temperature. Jamil et al. [9] used hybrid nano 
fluids (Al2O3 + MWCNT) to measure the 
performance characteristics of Ti–6Al–4V. The 
results were compared with cryogenic cooling 
process and reduction in surface roughness, 
cutting force and improved tool life were 
observed under nano MQL cutting conditions.   
Sridhara et al.[10] conducted a review on Al2O3 
nano cutting fluids and stated that there is an 
enhancement of 2 % to 36 % in thermal 
conductivity.  The responses depend on the 
process parameters, hence proper selection of 
process parameters to achieve the optimal 
values of responses is a tedious step. Taguchi 
orthogonal arrays, response surface 
methodology, etc. are the statistical approaches 
for proper selection of process parameters in 
order to achieve optimal values for the 
responses. S Settu et al. [11] discussed the 
implementation of Taguchi and Anova 
techniques to study the influence of machining 
parameters on tool wear and surface finish 
during key way milling of EN8 steel by the 
application of nano cutting fluid. Taguchi 
technique was used to predict the optimum 
parameters and the significant levels were found 
by using ANOVA. From their findings it was 
understood that surface finish was 
predominantly significant by cutting speed 
whereas feed rate followed by spindle speed are 
statistically significant for tool wear. Abbas et al. 
[12-13] used ANN to achieve the optimum 
conditions for surface roughness, machining 
time and processing cost while considering 
cutting speed, feed and depth of cut during 
turning of AA6061shafts and AZ61 magnesium 
alloy. Abbas et al. [14] used Edge worth pareto 
method for the first time to optimize the process 
parameters during turning of high strength steel.  
Zain et al. [15] utilized evolutionary techniques 
like genetic algorithm as an optimization tool for 
minimizing SR. Li et al. [16] used non dominated 
sorting genetic algorithm to optimize the 
production cost and surface quality 
simultaneously. Liu et al. [17] optimized the 
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grinding process parameters using grey 
relational analysis. Venkata Rao et al. [18] used a 
new nature based teaching learning algorithm 
for optimization of turning, grinding and drilling 
process parameters. Iqbal et al. [19] studied tool 
life and surface roughness using D-optimal 
method and concluded that increase in 
rotational speed is favorable for surface 
roughness but unfavorable for tool life. Due to 
the complexity of machining process, where 
multiple responses must be simultaneously 
optimized there is a need for multi-obj 
optimization. Multi-obj optimization requires 
computing the best trade-off between two or 
more conflicting objectives. This method has 
been researched and applied to problems in 
many fields of science, engineering, economics 
and logistics. Sardinas et al. [20] remarked the 
benefits of multi-obj optimization over single 
response optimization. Azizi et al. [21] used 
desirability function approach to obtain the 
optimum machining conditions and workpiece 
hardness for lower SR at minimum CF. Zerti et 
al. [22] developed models through RSM and ANN 
methods through which  multi-objective 
optimization of surface roughness, material 
removal rate and power consumption is 
achieved through desirability function. The 
authors concluded that feed rate is the most 
significant factor effecting the surface roughness 
and depth of cut is the most influencing factor 
for cutting force, cutting power and material 
removal rate. Aouici et al. [23] predicted the 
model for SR and CF respectively through which 
the multi-objective optimization is carried by 
using desirability function approach. 
Sathishkumar et al. [24] also conducted multi 
response optimization for surface roughness and 
cutting temperature using desirability function 
analysis. Raju et al. [25] used hybrid grey-fuzzy 
method to optimize multiple responses. 
Narayanan et al. [26] carried out multi response 
optimization on SR and material removal rate 
using genetic algorithm. 
 
From the literature survey the following gaps in 
research were identified: 

1. In existing literature, volume concentration 
and MQL were analyzed as one-factor-at-a-
time, thereby increasing the number of 
experiments and also precise solutions are 
also not obtained. The present study 
considers DOE technique to reduce the total 

number of experiments as well to get more 
accurate results. 

2. Most of the multi-objective optimization is 
carried out using Desirability approach. This 
only suggests the best among the available 
options, whereas genetic algorithm can find 
out untested optimal options. 

 
In the present work, AISI 1040 steel was 
machined with Tungsten carbide. Al2O3 nano 
particles of size 40nm were dispersed in de-
ionized water and used as a cutting fluid under 
MQL conditions. The effect of volume 
concentration, MQL flow rate, speed, feed rate, 
DOC on cutting force, surface roughness and 
cutting temperature were studied through 
response surface methodology. Regression 
equations were developed for all the three 
responses and the effecting parameters were 
studied.  Finally, optimum cutting conditions 
were obtained through genetic algorithm.  
 
 
2. MATERIALS AND METHODS 
 
2.1 Experimental set up 
 
Kennametal made Tungsten-carbide insert 
whose standard designation TNMG160408H 
with six working triangular edges was used for 
turning AISI 1040 carbon steel of size 
300mmx40mm. This steel is primarily used for 
automobile components such as axles, bolts, 
forged connecting rods, crankshafts, torsion 
bars, light gears, guide rods etc. The chemical 
compositions of AISI 1040 carbon steel and 
Tungsten-carbide insert are shown in Table 1 
and Table 2 respectively. Because of the high 
carbon content, the steel is hard thus generates 
stronger frictional forces, thereby increasing the 
cutting temperature. Due to high cutting 
temperature, product quality degrades and 
cutting tool wears out quickly. To avoid this, 
usage of a coolant is mandatory during 
machining. Al2O3 nano particles have been 
chosen because of properties such as high 
conductivity, wear resistance and good 
lubricating properties. The Al2O3 nano particles 
were dispersed in de-ionized water, the 
resulting colloidal solution was used as cutting 
fluid. MTJNR 1616H16 was used for holding the 
inserts. Moreover, variable high-speed precision 
lathe machine with Kenco MQL set up was used 
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for conducting the experiments. Experimental 
setup is displayed in Fig. 1.  
 

 
Fig.1. Experimental set up. 

 
Table 1.  Chemical composition of AISI 1040 steel. 

Element C Si Mn P S Fe 
% in wt. 0.473 0.295 0.738 0.022 0.007 98.465 

 
Table 2.  Chemical composition of Tungsten-Carbide 
Insert. 

Element W C Ni Cr Fe 
% in wt. Balance 4.8-5.6 8.5-11.5 4.4-5.6 <0.3 

 
Aluminum-oxide (Al2O3) nano particles of size 
40nm were purchased from Nano Research Lab, 
Jamshedpur. The cutting fluid required for 
turning operation was prepared by mixing Al2O3 
nano particles with de-ionized water.  
 
2.2 Preparation of nano fluid 
 
For the preparation of Al2O3 nano fluid two-step 
method was used as it is economical when 
prepared in large scale. The foremost step was 
to obtain dried nano particles. For this process, 
Al2O3 nano particles were purchased from Nano 
Research Lab, Jamshedpur, India. Al2O3 nano 
particles were spherical in form and had an 
average grain size of 40 nm. These were then 
suspended in different volume concentration 
percentages (0.2, 0.4 and 0.6 %) in base fluid. 
Moreover, the base fluid used in this work was 
de-ionized. The quantity of nano particles 
required for preparation of nano fluid was 
calculated by using rule of mixtures. 
 

% 𝒗𝒐𝒍𝒖𝒎𝒆 𝒄𝒐𝒏𝒄𝒆𝒏𝒕𝒓𝒂𝒕𝒊𝒐𝒏 =

𝑾𝑨𝒍𝟐𝑶𝟑

𝝆𝑨𝒍𝟐𝑶𝟑
𝑾𝑨𝒍𝟐𝑶𝟑

𝝆𝑨𝒍𝟐𝑶𝟑
+

𝑾𝒃𝒇

𝝆𝒃𝒇

      (1)                                                

 

 
Fig. 2. Sonication of Nano Fluid. 

 
SDBS was used in de-ionized water for the 
purpose of increasing the stability in nano 
particles. Ali et al. [27] in their work  proved that 
surfactant (SDBS) also improves the surface 
roughness. The quantity of SDBS taken was also 
calculated using rule of mixtures. The desired 
quantity of SDBS was taken and mixed gradually 
in a step-up-step process with de-ionized water. 
The mixture was set for magnetic stirring for a 
period of 15min to ensure proper dissolving of 
surfactant. The premeasured quantity of nano 
particles was added meticulously to the above 
mixture. This mixture was set for sonication at a 
frequency of 60 Hz for 60 min for proper 
dispersion of nano particles.  Sonication of nano 
fluid is shown in Fig. 2. The CF, SR and CT are 
measured by using Kistler piezoelectric 
dynamometer with Type 5070 charge amplifier, 
Taylor Hobson Surtronic S128 and infrared 
pyrometer respectively. 
 
2.3 Design of Experiments 
 

Central Composite Face Centered (CCF) design 
with five factors namely volume concentration 
(vol.c), MQL flow rate (LFR), speed, feed and 
DOC at three levels is used for conducting 
experiments. CCF design requires fewer runs for 
five factors at three levels than full factorial 
designs and other central composite designs. 
The design also enables us to find the optimal 
values. CCF design contains 16 fractional 
factorial points, 10 axial points and 2 center 
points making a total of 28 runs for five factors 
at three levels. The parameters to be studied and 
their levels are presented in Table 3. CCF design 
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along with responses CF, SR and CT are 
displayed in Table 4. 
 
Table 3. Process parameters at three levels. 

Factor 
symbol 

Factor 
Level 1 

(-1) 
Level 2 

(0) 
Level 3 

(+1) 

A 
Volume 

Concentration (%) 
0.2 0.4 0.6 

B 
MQL Flow 

rate(ml/min) 
3 4 5 

C 
Cutting Speed 

Vc(m/min) 
80 100 120 

D 
Feed Rate f 
(mm/rev) 

0.051 0.102 0.153 

E DOC d (mm) 0.25 0.5 0.75 

 

Table 4. Central composite design in coded form with 
responses. 

Ex. 
No 

Volu
me 

conc
entr
ation  
(%) 

MQL 
flow 
rate 
(ml/
min) 

Cutti
ng 

spee
d V 
(m/
min) 

Feed 
rate 

f 
(mm
/rev

) 

Depth 
of cut 
d(mm

) 

Surface 
roughne

ss 
Ra(μm) 

Cutting 
force Fz 

(kgf) 

Temper
ature 
T(C) 

1 -1 -1 -1 -1 +1 0.90 131.8 55.00 
2 -1 -1 -1 +1 -1 2.20 159.0 46.10 
3 -1 -1 +1 -1 -1 2.46 086.7 54.95 
4 -1 -1 +1 +1 +1 1.65 339.0 92.50 
5 -1 +1 -1 -1 -1 2.25 102.5 36.55 
6 -1 +1 -1 +1 +1 2.00 415.6 59.90 
7 -1 +1 +1 -1 +1 1.80 209.4 49.80 
8 -1 +1 +1 +1 -1 1.34 121.0 50.45 
9 +1 -1 -1 -1 -1 1.76 084.9 38.75 

10 +1 -1 -1 +1 +1 1.30 404.0 67.40 
11 +1 -1 +1 -1 +1 1.45 191.2 70.50 
12 +1 -1 +1 +1 -1 1.48 155.0 54.90 
13 +1 +1 -1 -1 +1 2.00 205.5 40.25 
14 +1 +1 -1 +1 -1 2.45 153.0 42.30 
15 +1 +1 +1 -1 -1 1.80 074.8 37.90 
16 +1 +1 +1 +1 +1 1.40 296.6 88.55 
17 -1 0 0 0 0 1.97 212.3 68.75 
18 +1 0 0 0 0 1.83 222.7 64.35 
19 0 -1 0 0 0 1.40 196.5 74.70 
20 0 +1 0 0 0 1.13 165.5 61.90 
21 0 0 -1 0 0 1.56 243.0 63.40 
22 0 0 +1 0 0 1.29 206.0 55.00 
23 0 0 0 -1 0 1.59 136.6 52.50 
24 0 0 0 +1 0 1.60 251.4 53.50 
25 0 0 0 0 -1 1.40 117.8 56.90 
26 0 0 0 0 +1 1.09 337.0 72.80 
27 0 0 0 0 0 1.15 204.9 65.00 
28 0 0 0 0 0 1.21 201.8 68.51 

 
 
3. RESULTS AND DISCUSSION 

 
The responses CF, SR and CT are evaluated from 
the experiments in order to study the influence 
of volume concentration, MQL flow rate, cutting 
speed, feed and depth of cut on the process. The 

effect of individual process variables on 
responses are studied using multi linear 
backward regression model.  
 
3.1 Analysis of Variance 
 

Anova is the most powerful tool in order to 
understand the effect of process parameters on 
the responses. The analysis of the present study 
has been carried out using the coded form of 
data in SPSS software. Anova for CF, SR AND CT 
are shown in Tables 5a, 6a and 7a respectively 
and the estimated coefficients are displayed in 
Tables 5b, 6b and 7b respectively. 

 
3.2 Regression equation for cutting force 

 
From Table 5a R2 value of 0.975 indicates the 
adequacy of the model in determining the output 
response i.e. cutting force. The data from Table 5b 
shows that speed, feed and DOC are the 
predominating parameters for cutting force. In 
addition, interaction terms vol.c*LFR, LFR*speed, 
LFR*feed, speed*feed, feed*DOC also signify their 
effect on cutting force. The presence of square 
term LFR2 indicates the quadratic nature of the 
equation. The developed mathematical equation 
for cutting force is given as: 

𝐶𝐹 =  214.633 −  12.2 ∗ 𝑠𝑝𝑒𝑒𝑑 +  59.511 ∗
𝑓𝑒𝑒𝑑 +  81.867 ∗ 𝐷𝑂𝐶 −  20.633 ∗ 𝐿𝐹𝑅2 −
 14.825 ∗ 𝑣𝑜𝑙. 𝑐 ∗ 𝐿𝐹𝑅 −  10.437 ∗ 𝐿𝐹𝑅 ∗
𝑠𝑝𝑒𝑒𝑑 −  10.525 ∗ 𝐿𝐹𝑅 ∗ 𝑓𝑒𝑒𝑑 −  16.088 ∗
𝑠𝑝𝑒𝑒𝑑 ∗ 𝑓𝑒𝑒𝑑 +  29.888 ∗ 𝑓𝑒𝑒𝑑 ∗ 𝐷𝑂𝐶  (2) 

It can be observed from Equation 2 that DOC is 
having more effect on cutting force followed 
by feed rate and speed.  Hwang et al. [28] have 
also come to the same conclusion in their 
study. The increase in DOC and feed rate 
increases the cutting force. This may be due to 
the removal of more amount of material. 
Whereas, the cutting force decreases with 
increase in cutting speed which is coinciding 
with established theory. A possible 
explanation to this phenomenon is that chip 
flow increases when cutting speed increases, 
thereby minimizing the coefficient of friction 
at the area of contact between tool and 
workpiece. Another possibility is that the chip 
thickness reduces due to higher cutting speed. 
At lower cutting speeds, there is less shearing 
and plastic deformation, which explains the 
low cutting force.  
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Table 5a. ANOVA for cutting force. 

Model Sum of 
squares df Mean 

square F Significant 

Regression 215380.536 9 23931.171 72.837 0.000 
Residual 5585.510 17 328.559   

Total 220966.047 26    
R2 – 0.975 

 
Table 5b. Estimated coefficients for cutting force. 

Variable 
Parameter 
Estimate 

Standard 
Error 

t Sig. 

Constant 214.633 6.764 35.523 0.000 
C -12.2 4.272 -2.856 0.011 
D 59.511 4.272 13.929 0.000 
E 81.967 4.272 19.185 0.000 
B2 -20.633 7.400 -2.788 0.013 
AB -14.825 4.532 -3.272 0.004 
BC -10.437 4.532 -2.303 0.034 
BD -10.525 4.532 -2.323 0.033 
CD -16.088 4.532 -3.550 0.002 
DE 29.888 4.532 6.595 0.000 

 
3.3 Model equation for surface roughness 
 
From Table 6a R2 value of 0.849 indicates that 
the model is able to explain 84.9% variation in 
output response i.e. surface roughness with 
respect to input parameters. As we can see from 
Table 6b, MQL flow rate, speed and DOC have 
significant primary effect on surface roughness. 
Fratila et al. [29] have observed the same factors 
as dominating factors. Also, other terms like 
vol.c*LFR, LFR*speed, LFR*DOC, speed*feed, 
speed*DOC have a secondary effect on surface 
roughness. We can clearly see that it is a 
quadratic equation, as the square term vol.c2 
exists. The developed mathematical equation for 
surface roughness is given as:  

𝑆𝑅 =  1.356 +  0.087 ∗ 𝐿𝐹𝑅 −  0.097 ∗
𝑠𝑝𝑒𝑒𝑑 −  0.198 ∗ 𝐷𝑂𝐶  +  0.425 ∗ 𝑣𝑜𝑙. 𝑐2  +
 0.092 ∗ 𝑣𝑜𝑙. 𝑐 ∗ 𝐿𝐹𝑅 −  0.202 ∗ 𝐿𝐹𝑅 ∗ 𝑠𝑝𝑒𝑒𝑑 +
 0.123 ∗ 𝐿𝐹𝑅 ∗ 𝐷𝑂𝐶 −  0.167 ∗ 𝑠𝑝𝑒𝑒𝑑 ∗ 𝑓𝑒𝑒𝑑 +
 0.105 ∗ 𝑠𝑝𝑒𝑒𝑑 ∗ 𝐷𝑂𝐶     (3) 

Table 6a. ANOVA for surface roughness. 

Model Sum of squares df 
Mean 

square 
F Significant 

Regression 3.747 9 0.416 10.6 0.000 
Residual 0.668 17 0.039   

Total 4.415 26    
R2 – 0.849  

 
From Equation 3, it can be observed that 
increase in speed and DOC reduces surface 
roughness whereas roughness increases with 
increase in MQL flow rate. This may be due to 

the presence of some unknown or noise factors. 
At higher cutting speeds, the heat generated at 
the machining zone decreases the chances of 
generating the built-up edges. This prevents the 
chip fracture, because of which the surface 
roughness is reduced. 
 
Table 6b. Estimated coefficients of parameters for 
surface roughness. 

Variable 
Parameter 
Estimate 

Standard 
Error 

t Sig. 

Constant 1.356 0.066 20.520 0.000 

B 0.087 0.047 1.861 0.080 

C -0.097 0.047 -2.075 0.053 

E -0.198 0.047 -4.228 0.001 

A2 0.425 0.081 5.252 0.000 

AB 0.092 0.050 1.861 0.080 

BC -0.202 0.050 -4.081 0.001 

BE 0.123 0.050 2.479 0.024 

CD -0.167 0.050 -3.375 0.004 

CE 0.105 0.050 2.126 0.048 

 

3.4 Regression equation for cutting 
temperature 

 
From Table 7a R2 value of 0.864 indicates that 
the model is 86.4% adequate in determining the 
relation between output response i.e. cutting 
temperature and process parameters. Table 7b 
MQL flow rate, speed, feed and DOC have 
significant primary effect on surface roughness. 
Also, other terms like speed*DOC, feed*DOC 
have significant correlation with cutting 
temperature. The presence of square term feed2 
clearly shows that it is a quadratic equation. The 
developed mathematical equation for cutting 
temperature is given as  

𝐶𝑇 =  64.756 − 4.844 ∗ 𝐿𝐹𝑅 + 5.828 ∗ 𝑠𝑝𝑒𝑒𝑑 +
6.633 ∗ 𝑓𝑒𝑒𝑑 +  9.883 ∗ 𝐷𝑂𝐶 − 9.656 ∗ 𝑓𝑒𝑒𝑑2 +
2.769 ∗ 𝑠𝑝𝑒𝑒𝑑 ∗ 𝐷𝑂𝐶 +  4.2 ∗ 𝑓𝑒𝑒𝑑 ∗ 𝐷𝑂𝐶  (4) 

From Equation (4) it is observed that cutting 
temperature increases with increase in speed, 
feedrate and DOC and decreases with increase of 
MQL flow rate.  As the feed rate increases, the 
chip size increases and leading to increased 
friction at the tool-workpiece interface. This 
leads to higher temperature in the cutting zone. 
Increase in cutting speed causes higher friction, 
causing the temperature to raise. When MQL 
flow rate increases, the nanoparticle-based mist 
forms a stable thin film in the machining zone. 
The water evaporates quickly, leaving behind 
the thin nano particles which form a tribological 
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film which improves lubrication, and reduces 
further heating. While the water evaporates, it 
takes away a lot of heat from the machining zone 
which leads to drop in temperature. Similar 
observations were made by Ul Haq et al. [30]. 
  
Table 7a. ANOVA for cutting temperature. 

Model 
Sum of 
squares 

df 
Mean 

square 
F Significant 

Regression 4548.309 7 649.758 17.180 0.000 
Residual 718.612 19 37.822   

Total 5266.921 26    

R2-0.864 
 

Table 7b. Estimated coefficients for cutting 
temperature. 

Variable 
Parameter 
Estimate 

Standard 
Error 

t Sig. 

Constant 64.756 2.050 31.588 0.000 
B -4.844 1.450 -3.342 0.003 
C 5.828 1.450 4.020 0.001 
D 6.633 1.450 4.576 0.000 
E 9.883 1.450 6.818 0.000 

D2 -9.656 2.511 -3.846 0.001 
CE 2.769 1.537 1.801 0.088 
DE 4.200 1.537 2.732 0.013 

 
3.5 Genetic Algorithm  
 
The theory of genetic algorithms (GA) was 
proposed by Holland J H[31]. GA is based on the 
theory of evolution which is the most convincing 
theory that explains the origins of various 
species. In the natural world, the species evolve 
or become extinct based on natural selection. 
Species which adopt to changes in their 
environment survive and spawn newer 
generations. The adaptability is determined by 
the genes contained by the species. Genes evolve 
in two methods, crossover or mutation. 
Crossover is the process where strong genes 
from parents are passed to children. Mutation is 
the process where genes get modified.  
 
The theory of evolution is applied to 
optimization problems in the following manner. 
The set of possible solutions is called a 
population. An individual solution is made up of 
multiple genes. Crossover function selects genes 
from two fit parent individual solutions into 
offspring. The parents are selected from fitness 
functions. By iterating over the population, 
selecting parents using fitness function, the 
offspring tends to be alike and converges 
towards an optimal solution. The mutation 
operator has the opposite effect. It tries to 

introduce diversity in the population so that the 
solution set is not just satisfied by local optima 
and attempts to find a global optimum solution.  
The theory of Genetic Algorithm described 
above is applied to a problem which has a single 
objective. However, most real-life situations 
involve choosing the best compromise among a 
set of multiple orthogonal objectives. The same 
genetic algorithm approach can be applied even 
to multiple objective solutions as described in 
the next section. 
 
3.6 Multi-objective optimization using 

Genetic Algorithm 
 

In multi-objective optimization, the GA can be 
applied in multiple ways depending upon the 
problem domain [32]. Some of the well-known 
approaches are: weighted fitness function, 
altering objective functions and pareto ranking 
approach. In MATLAB, the pareto ranking 
approach known as non-dominated sorting 
genetic algorithm is available as function 
gamultiobj. This function is used to find the 
pareto optimal solutions. The rank is given to 
the population as per rule of dominance. 
Afterwards, each solution is given a fitness 
value based on the population rank. The 
following steps illustrate multi-objective 
problem solving using non-dominated sorting 
genetic algorithm (NSGA). 

Step 1: Randomly generate the initial population 
P1 (set of possible solutions) 

Step 2: Iterate over each generation as follows 
(until stop criteria is reached) 

Step 2.1: Evaluate objective values 

Step 2.2: Rank the solutions according to 
Pareto Dominance Rule 

Step 2.3: For non-dominated individuals, 
assign dummy fitness and compute 
shared fitness 

Step 2.4: When entire population is 
classified, reproduce according to 
dummy fitness 

Step 2.4.1: Apply Crossover 
operator 

Step 2.4.2: Apply Mutation 
operator 

Step 2.5: Check stop criteria (number of 
generations, functional tolerance etc.) 
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Step 3: End 

GA in MATLAB (R2018b version) software is 
used to find the minimum CF, SR and CT. The 
regression equations for CF, SR and CT are 
considered as the objective functions in GA.  
 
Problem formulation: 
The present problem is formulated as to 
minimize CF, SR and CT. Fitness function 
considered is shown in Equations 5, 6 and 7. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹𝑧 =  214.633 − 12.2 ∗ 𝑥 (3)  +  59.511 ∗
𝑥 (4)  + 81.867 ∗ 𝑥 (5) − 20.633 ∗ 𝑥(2)2 − 14.825 ∗
𝑥 (1)  ∗ 𝑥 (2) − 10.437 ∗ 𝑥 (2)  ∗ 𝑥 (3) − 10.525 ∗
𝑥 (2)  ∗  𝑥 (4) − 16.088 ∗ 𝑥 (3)  ∗  𝑥 (4)  +  29.888 ∗
 𝑥 (4)  ∗ 𝑥 (5)                                                         (5)   

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑆𝑅 =  1.356 + 0.087 ∗ 𝑥(2) − 0.097 ∗
𝑥(3) − 0.198 ∗ 𝑥(5) + 0.092 ∗ 𝑥(1) ∗ 𝑥(2) − 0.202 ∗
𝑥(2) ∗ 𝑥(3) + 0.123 ∗ 𝑥(2) ∗ 𝑥(5) − 0.167 ∗ 𝑥(3) ∗
𝑥(4) + 0.105 ∗ 𝑥(3) ∗ 𝑥(5) + 0.425 ∗ 𝑥(1)2            (6)   

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶𝑇 =  64.756 − 4.844 ∗ 𝑥(2) + 5.828 ∗
𝑥(3) + 6.633 ∗ 𝑥(4) + 9.883 ∗ 𝑥(5) − 9.656 ∗ 𝑥(4)2 +
2.769 ∗ 𝑥(3) ∗ 𝑥(5) + 4.2 ∗ 𝑥(4) ∗ 𝑥(5)              (7) 

Where x (1), x (2), x (3), x (4), x (5) are vol. c, 
LFR, speed, feed and DOC respectively. 
 
Limits: 
-1 ≤ Vol.c ≤ 1 
-1 ≤LFR ≤ 1 
-1 ≤ Speed ≤ 1 
-1 ≤ Feed rate ≤ 1 
-1 ≤ DOC ≤ 1 
 
The limits are considered from their levels. -1 
and +1 are considered for lower bound and 
upper bound respectively. The other parameter 
setting for multi-objective optimization is shown 
in Table 8. The multi-objective optimization is 
carried out using GA optimization tool box. Since 
it is a multi-objective optimization, there are 
number of solutions which we call them as 
pareto solutions. The pareto solutions are shown 
in Table 9 and 3D pareto plot is illustrated in 
Figure 3.  The pareto front is the set of optimal 
solutions that are non-dominated. For all the 
points on the pareto front, it is not possible to 

improve one objective without sacrificing 
another objective. 
 
Table 8. GA multi-obj parameter settings. 

Subject Values 

Population size 100 

Crossover rate 0.8 

Mutation rate 0.1 

No. of generations 500 

 

 

Fig. 3. 3D pareto front. 
 
Table 9. Pareto solutions from GA. 

A 
(%) 

B 
(ml/min) 

C 
(m/min) 

D 
(mm/rev) 

E 
(mm) 

CF 
(Kgf) 

SR 
(μm) 

CT 
(oC) 

0.43 3.10 80.50 0.06 0.75 188.22 0.65 54.62 
0.60 4.95 118.88 0.06 0.26 77.76 1.78 44.14 
0.60 4.96 80.83 0.05 0.26 88.23 2.24 35.96 
0.43 4.97 118.76 0.12 0.38 140.14 1.13 60.24 
0.43 3.31 81.29 0.06 0.65 174.96 0.88 52.03 
0.60 4.96 80.84 0.05 0.26 88.14 2.25 35.97 
0.39 4.97 119.08 0.09 0.39 133.09 1.19 58.26 
0.34 3.10 80.80 0.06 0.75 182.64 0.72 54.90 
0.60 4.96 104.44 0.06 0.26 82.04 1.96 41.38 
0.51 4.96 83.33 0.05 0.32 106.17 1.86 37.21 
0.32 3.45 80.79 0.05 0.63 162.93 1.05 48.62 
0.41 4.08 81.01 0.06 0.66 197.05 1.15 47.72 
0.55 4.95 109.22 0.06 0.27 86.09 1.72 42.76 
0.59 4.84 85.09 0.05 0.28 97.90 2.14 38.43 
0.46 4.96 118.44 0.07 0.33 104.09 1.33 49.24 
0.39 4.92 114.97 0.06 0.47 143.17 1.33 51.19 
0.37 3.88 80.82 0.06 0.52 159.61 1.27 46.24 
0.35 4.96 117.77 0.08 0.38 132.91 1.23 56.28 

 
Table 10. Confirmation results. 

A B C D E 
Confirmation values Predicted values Error % 

CF SR CT CF SR CT CF SR CT 
0.59 4.96 80.83 0.052 0.255 91.65 2.16 37.8 88.23 2.24 35.96 3.73 3.7 4.9 
0.51 4.96 83.33 0.052 0.316 103.2 1.94 39.14 106.17 1.86 37.21 2.9 4.1 4.9 

0.59 4.84 85.09 0.054 0.28 102.6 2.08 36.8 97.9 2.14 38.43 4.6 2.9 4.4 
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3.7 Confirmation experiments 
 
Three runs are randomly selected from pareto 
solutions to verify and validate the proposed 
model for prediction of CF, SR and CT. The 
results obtained from confirmation tests are in 
reasonable agreement with the predicted values 
with error percentage of less than 5 % for all the 
responses i.e. CF, SR and CT. Table 10 shows the 
results of confirmation tests along with 
predicted values and percentage of error. Figs. 4-
6 depicts the results pictorially. From Fig. 4 the 
average cutting force value for confirmation 
experiments and predicted value are 99.15 Kgf 
and 97.43 Kgf respectively. The relative error is 
less than 2 %. From Fig. 5 the average surface 
roughness value for confirmation experiments 
and predicted are 2.06 µm and 2.08 µm 
respectively. The relative error is approximately 
1 %. From Fig. 6 the average cutting 
temperature for confirmation experiments and 
predicted are 37.91 °C and 37.2 °C respectively. 
The relative error is nearly 2 %. 
 

 
Fig. 4. Comparative bar chart of experimental and 
optimum predicted values for cutting force. 

 

 
Fig. 5. Comparative bar chart of experimental and 
optimum predicted values for surface roughness. 

 

Fig. 6. Comparative bar chart of experimental and 
optimum predicted values for temperature. 

 
 
4. CONCLUSIONS 

 
In the present work, multi-objective optimization 
of process parameters has been carried while 
machining AISI 1040 steel using Al2O3 nano 
particles with MQL technique. The following 
conclusions were drawn:  

1. Speed, feed and DOC are the predominant 
factors effecting on the cutting force where as 
MQL flow rate, speed and DOC are the primary 
factors effecting on the SR and cutting 
temperature is predominantly affected by MQL 
flow rate, speed, feed and DOC. 

2. R2 values of 0.975, 0.849 and 0.864 for CF, 
SR and CT respectively shows that the 
developed quadratic model can effectively 
determine the relation between response 
and process variables. 

3. The optimum process values for all the 
responses are obtained through the 
developed quadratic equations. By applying 
the technique of GA, multi-objective 
optimization is carried out for minimizing 
CF, minimizing SR and also for minimizing 
CT to detect the optimum process 
parameters for turning of AISI 1040 steel 
using MQL technique. 

4. Confirmation experiments were 
conducted by randomly selecting the 
pareto solutions obtained from GA and 
error percentages of 4.6%, 3.7% and 4.9% 
respectively for CF, SR and CT shows that 
the predicted optimum values are justified 
with the confirmation result. 
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Several existing studies have already shown the 
benefits of using Al2O3 nano fluids via MQL. The 
Genetic algorithm outlined in the current study 
provides the global optimum parameters for the 
given problem. Using this approach reduces cost 
of production and improves the quality of the 
performance characteristics. Application of DOE 
reduces the requirement of resources and also 
experimental effort. 
 
 

REFERENCES   
 
[1] M.A. Dandan, W.M.A.W. Yahaya, S. Samion, M.N. 

Musa, A Comprehensive Review on Palm Oil and 
the Challenges using Vegetable Oil as Lubricant 
Base-Stock, Journal of Advanced Research in 
Fluid Mechanics and Thermal Sciences, vol. 52, 
no. 2, pp. 182–197, 2018. 

[2] P.S. Sreejith, B.K.A. Ngoi, Dry machining: Machining 
of the future, Journal of Materials Processing 
Technology, vol. 101, iss. 1-3, pp. 287-291, 2000, 
doi: 10.1016/S0924-0136(00)00445-3 

[3] M.Q.M. Yusof, H.N.S. B. Harun, R. Bahar, 
Experimental Investigation of Minimum Quantity 
Lubrication in Meso-scale Milling with Varying 
Tool Diameter, IOP Conference Series: Materials 
Science and Engineering, vol. 290, pp. 1-6, 2018, 
doi: 10.1088/1757-899X/290/1/012035 

[4] N.R. Dhar, M.T. Ahmed, S. Islam, An experimental 
investigation on effect of minimum quantity 
lubrication in machining AISI 1040 steel, 
International Journal of Machine Tools and 
Manufacture, vol. 47, iss. 5, pp. 748–753, 2007, 
doi: 10.1016/j.ijmachtools.2006.09.017 

[5] S. Masoudi, A. Vafadar, M. Hadad, F. Jafarian, 
Experimental investigation into the effects of nozzle 
position, workpiece hardness, and tool type in MQL 
turning of AISI 1045 steel, Materials and 
Manufacturing Processes, vol. 33, no. 9, pp. 1011–
1019, 2018, doi: 10.1080/10426914.2017.1401716 

[6] U.S. Dixit, D.K. Sarma, J. Paulo Davim, 
Environmentally Friendly Machining, in 
SpringerBriefs in Applied Sciences and Technology. 
Springer, 2012, doi: 10.1007/978-1-4614-2308-9 

[7] H.A. Hasan, Z. Alquziweeni, K. Sopian, Heat Transfer 
Enhancement Using Nanofluids For Cooling A Central 
Processing Unit (CPU) System, Journal of Advanced 
Research in Fluid Mechanics and Thermal Sciences, 
vol. 51, iss. 2, pp. 145–157, 2018. 

[8] A.M. Khan, M. Jamil, A.U. Haq, S. Hussain, L. 
Meng, N. He, Sustainable machining. Modeling 
and optimization of temperature and surface 
roughness in the milling of AISI D2 steel, 
Industrial Lubrication and Tribology, vol. 71, no. 

2, pp. 267–277, 2019, doi: 10.1108/ILT-11-
2017-0322 

[9] M. Jamil, A.M. Khan, H. Hegab, L. Gong, M. Mia, M.K. 
Gupta, N. He, Effects of hybrid Al 2 O 3 -CNT nanofluids 
and cryogenic cooling on machining of Ti–6Al–4V, The 
International Journal of Advanced Manufacturing 
Technology, vol. 102, iss. 9-12, pp. 3895-3909, 2019, 
doi: 10.1007/s00170-019-03485-9 

[10] V. Sridhara, L.N. Satapathy, Al2O3-based nanofluids: 
A review, Nanoscale Research Letters, vol. 6, no. 
456, 2011, doi: 10.1186/1556-276X-6-456 

[11] S. Settu, M. Nandagopal, Experimental Investigation 
on Performance of Milling Operation Using Vegetable 
Oil Based Nano Cutting Fluid and Its Process 
Parameters Optimization Using Taguchi and Anova, 
Discovery, vol. 23, iss. 78, pp. 89–93, 2014. 

[12] A. Abbas, D. Pimenov, I. Erdakov, M. Taha, M.El 
Rayes, M. Soliman, Artificial Intelligence Monitoring 
of Hardening Methods and Cutting Conditions and 
Their Effects on Surface Roughness, Performance, 
and Finish Turning Costs of Solid-State Recycled 
Aluminum Alloy 6061 Сhips, Metals, vol. 8, iss. 6, p. 
394, 2018, doi: 10.3390/met8060394 

[13] A.T. Abbas, D.Y. Pimenov, I.N. Erdakov, M.A. 
Taha, M.S. Soliman, M.M. El Rayes, ANN surface 
roughness optimization of AZ61 magnesium alloy 
finish turning: Minimum machining times at 
prime machining costs, Materials, vol. 11, iss. 5, p. 
808, 2018, doi: 10.3390/ma11050808 

[14] A.T. Abbas, D.Y. Pimenov, I.N. Erdakov, T. Mikolajczyk, 
E.A. El Danaf, M.A. Taha, Minimization of turning time 
for high-strength steel with a given surface roughness 
using the Edgeworth–Pareto optimization method, 
The International Journal of Advanced Manufacturing 
Technology, vol. 93, iss. 5–8, pp. 2375–2392, 2017, 
doi: 10.1007/s00170-017-0678-2 

[15] A.M. Zain, H. Haron, S. Sharif, Application of GA to 
optimize cutting conditions for minimizing surface 
roughness in end milling machining process, Expert 
Systems with Applications, vol. 37, iss. 6, pp. 4650–
4659, 2010, doi: 10.1016/j.eswa.2009.12.043 

[16] J. Li, X. Yang, C. Ren, G. Chen, Y. Wang, 
Multiobjective optimization of cutting parameters 
in Ti-6Al-4V milling process using nondominated 
sorting genetic algorithm-II, The International 
Journal of Advanced Manufacturing Technology, 
vol. 76, iss. 5–8, pp. 941–953, 2014, doi: 
10.1007/s00170-014-6311-8 

[17] G. Liu, C. Li, Y. Zhang, M. Yang, D. Jia, X. Zhang, H. 
Zhai, Process parameter optimization and 
experimental evaluation for nanofluid MQL in 
grinding Ti-6Al-4V based on grey relational 
analysis, Materials and Manufacturing Processes, 
vol. 33, iss. 9, pp. 950–963, 2018, doi: 
10.1080/10426914.2017.1388522 

https://doi.org/10.1016/S0924-0136(00)00445-3
https://doi.org/10.1088/1757-899X/290/1/012035
https://doi.org/10.1016/j.ijmachtools.2006.09.017
https://doi.org/10.1080/10426914.2017.1401716
https://doi.org/10.1007/978-1-4614-2308-9
https://doi.org/10.1108/ILT-11-2017-0322
https://doi.org/10.1108/ILT-11-2017-0322
https://doi.org/10.1007/s00170-019-03485-9
https://doi.org/10.1186/1556-276X-6-456
https://doi.org/10.3390/met8060394
https://doi.org/10.3390/ma11050808
https://doi.org/10.1007/s00170-017-0678-2
https://doi.org/10.1016/j.eswa.2009.12.043
https://doi.org/10.1007/s00170-014-6311-8
https://doi.org/10.1007/s00170-014-6311-8
https://doi.org/10.1080/10426914.2017.1388522
https://doi.org/10.1080/10426914.2017.1388522


M. Usha and G.S. Rao, Tribology in Industry Vol. 42, No. 1 (2020) 70-80 

 80 

[18] R.V. Rao, V.D. Kalyankar, Parameter optimization of 
machining processes using a new optimization 
algorithm, Materials and Manufacturing Processes, 
vol. 27, iss. 9, pp. 978–985, 2012, doi: 
10.1080/10426914.2011.602792 

[19] A. Iqbal, H. Ning, I. Khan, L. Liang, N.U. Dar, 
Modeling the effects of cutting parameters in MQL-
employed finish hard-milling process using D-
optimal method, Journal of Materials Processing 
Technology, vol. 199, iss. 1, pp. 379–390, 2008, doi: 
10.1016/j.jmatprotec.2007.08.029 

[20] R.Q. Sardiñas, M.R. Santana, E.A. Brindis, Genetic 
algorithm-based multi-objective optimization of 
cutting parameters in turning processes, Engineering 
Applications of Artificial Intelligence, vol. 19, iss. 2, pp. 
127–133, 2006, doi: 10.1016/j.engappai.2005.06.007 

[21] M.W. Azizi, S. Belhadi, M.A. Yallese, T. Mabrouki, J.F. 
Rigal, Surface roughness and cutting forces modeling 
for optimization of machining condition in finish hard 
turning of AISI 52100 steel, Journal of Mechanical 
Science and Technology, vol. 26, iss. 12, pp. 4105–
4114, 2012, doi: 10.1007/s12206-012-0885-6 

[22] A. Zerti, M.A. Yallese, I. Meddour, S. Belhadi, A. 
Haddad, T. Mabrouki, Modeling and multi-
objective optimization for minimizing surface 
roughness, cutting force, and power, and 
maximizing productivity for tempered stainless 
steel AISI 420 in turning operations, The 
International Journal of Advanced Manufacturing 
Technology, vol. 102, iss. 1–4, pp. 135–157, 2019, 
doi: 10.1007/s00170-018-2984-8 

[23] H. Aouici, M.A. Yallese, K. Chaoui, T. Mabrouki, J.F. 
Rigal, Analysis of surface roughness and cutting force 
components in hard turning with CBN tool: Prediction 
model and cutting conditions optimization, 
Measurement, vol. 45, iss. 3, pp. 344–353, 2012, doi: 
10.1016/j.measurement.2011.11.011 

[24] S.D. Sathishkumar, T. Rajmohan, Multi-Response 
Optimization of Machining Parameters in CNC 
Turning of AISI 316L Stainless Steel Using MQL 
Nano fluids, IOP Conference Series: Materials 
Science and Engineering, vol. 390, pp. 1-9, 2018, 
doi: 10.1088/1757-899X/390/1/012049 

[25] R.S.S. Raju, G.S. Rao, Assessment of tribological 
performance of coconut shell ash particle reinforced 
Al-Si-Fe composites using grey-fuzzy approach, 
Tribology in Industry, vol. 39, no. 3, pp. 364–377, 
2017, doi: 10.24874/ti.2017.39.03.12 

[26] N.S. Narayanan, N. Baskar, M. Ganesan, Multi 
Objective Optimization of machining parameters 
for Hard Turning OHNS/AISI H13 material, Using 
Genetic Algorithm, Materials Today: Proceedings, 
vol. 5, iss. 2, pp. 6897–6905, 2018, doi: 
10.1016/j.matpr.2017.11.351 

[27] M.A.M. Ali, A.N.M. Khalil, A.I. Azmi, Effect of 
Al2O3nanolubrication with Sodium Dodecylbenzene 
Sulfonate (SDBS) on surface roughness and tool 
wear under MQL during turning of Ti-6AL-4T., IOP 
Conference Series: Materials Science and 
Engineering, vol. 114, pp. 1-6, 2016, doi: 
10.1088/1757-899X/114/1/012110 

[28] Y.K. Hwang, C.M. Lee, Surface roughness and 
cutting force prediction in MQL and wet turning 
process of AISI 1045 using design of experiments, 
Journal of Mechanical Science and Technology, 
vol. 24, iss. 8, pp. 1669–1677, 2010, doi: 
10.1007/s12206-010-0522-1 

[29] D. Frǎţilǎ, C. Caizar, Investigation of the influence 
of process parameters and cooling method on the 
surface quality of AISI-1045 during turning, 
Materials and Manufacturing Processes, vol. 27, 
iss. 10, pp. 1123–1128, 2012, doi: 
10.1080/10426914.2012.677905 

[30] M.A. Ul Haq, A.M. Khan, L. Gong, T. Xu, L. Meng, S. 
Hussain, A Comparative Study of Face Milling of 
D2 Steel Using Al2O3 Based Nanofluid Minimum 
Quantity Lubrication and Minimum Quantity 
Lubrication, Advances in Science and 
Technology Research Journal, vol. 12, iss. 1, pp. 
99–105, 2018, doi: 10.12913/22998624/85629 

[31] J.H. Holland, Adaptation in Natural and Artificial 
Systems: An Introductory Analysis with 
Applications to Biology, Control, and Artificial 
Intelligence. MIT Press Cambridge, USA, 1992. 

[32] N. Srinivas, K. Deb, Muiltiobjective Optimization 
Using Nondominated Sorting in Genetic Algorithms, 
Evolutionary Computation, vol. 2, iss. 3, pp. 221–
248, 1994, doi: 10.1162/evco.1994.2.3.221 

 
 

Nomenclature 
 
ANOVA  analysis of variance 
CCF  central composite face centered 
CF, Fz  cutting force (Kgf) 
CT  cutting temperature (°C) 
DOC, d  depth of cut (mm) 
DOE  design of experiments 
f Feed rate(mm/rev) 
GA  genetic algorithm  
LFR MQL flow rate (ml/min) 
MQL  minimum quantity lubrication 
Multi-obj multi-objective 
NSGA non-dominated sorting genetic 

algorithm  
SR  surface roughness (µm) 
Vc cutting speed (m/min) 
vol.c  volume concentration (%) 
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