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 A B S T R A C T 

Tribology is the very efficient and strong tool in machine operations 
analysis. In the article author presented how the artificial intelligence 
algorithms could be applied to help in engine oil test results analysis. 
Based on the real-life turbofan engine oil sample test results dataset, the 
novel methodology of the machine learning algorithm implementation 
was presented. In order to take advantage of the artificial intelligence in 
engine oil test results interpretation, the augmented engine oil dataset 
was generated with additional predictors. Research case study was 
conducted for both original engine dataset as well as the augmented one. 
For the scientific purposed, various machine learning performance 
metrics were calculated, what allowed to precisely compare the results 
achieved for the original dataset and the one generated on the basis of the 
proposed novel method. The greatest achievement of the article was the 
presentation of the new methodology implementation in the real-life 
turbofan engine health status prediction. Presented methodology 
implemented into the aircraft (engine) maintenance management 
computer system allows to automate engine health status analysis and 
improve engine maintenance management. 
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1. INTRODUCTION 
 
Modern aircraft turbofan engines are an 
extremely complex, sophisticated, and advanced 
machines. Their reliability, endurance as well as 
durability are the key factors affecting aircraft 
operations and flight safety. That is the reason 
why engine health status analysis and prediction 
is the crucial element in supporting flight 
operations and aircraft readiness. All engine 
components are operating under extremely 
challenging conditions while being affected by 

severe stresses, strains, and thermal loads. Even 
though modern turbofan engines are equipped 
with an advanced Full Authority Digital Engine 
Controllers (FADEC) which are able to monitor 
and control engine operations, still there are no 
embedded controllers to assess engine 
components wearing and degradation. The only 
element which allows aircraft mechanics to 
detect any premature engine degradation and 
abnormal wear are the magnetic chip detectors, 
which are designed to collect metal particles from 
the engine lubrication system. Unfortunately, 
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they allow only to detect visible portion of the 
wearing product, while they are unable to sense 
any changes in chemical composition of the 
lubricants, which are the result of the unusual 
friction and thermal effects on the engine oil. That 
is the reason why tribology is such a strong tool 
in engine modules and parts wearing process 
analysis. During engine operations a slow, 
progressive wear metal concentration buildup 
above established abnormal criteria might be an 
indicator of impending engine or its component 
failure. Another indication could be a series of 
rapid wear metal concentration increases 
occurring below established abnormal criteria. 
What might be the typical sources of wear found 
in turbofan engines? Usually the worn bearings 
(balls, cages, races), bearing seals and retainers, 
bearing housing, constant speed drives, oil pump 
gears and gearbox castings. Nowadays, the 
analysis of the engine oil samples is being done 
manually by aviation laboratory personnel, 
which requires additional work to perform 
especially when the engine fleet is large and oil 
sample trending analysis is required. The 
question is, if it is possible to apply machine 
learning algorithms in engine premature 
degradation detection and prediction. In the 
article, a novel approach with full process 
methodology was presented on how to support 
maintenance personnel in engine health status 
prediction. 
 
 
2. RESEARCH GAP AND MOTIVATION 
 
Contemporary aircraft engines are usually 
maintained in accordance with the condition-
based maintenance strategy. It means that we can 
continue engine flight operations as long as its 
condition, health and performance comply with 
the designed requirements and do not exceed the 
assumed range. What was the motivation of the 
study? It results out of the experience in the air 
force and aviation industry. One of the most 
crucial decisions maintenance managerial 
personnel must make is answering the question: 
Can we still continue engine flight operations, or 
should we remove engine from the aircraft, 
before it fails. Too early engine removal 
decreases efficiency of engine useful life usage 
and is not financially effective. It also results in 
mission capability rate degradation and reduces 
aircraft fleet operations. On the other hand, 
continuing engine flight operations while engine 

should be removed from service might result in 
aircraft accident or even catastrophe. That is why 
it is extremely crucial to determine engine health 
status and predict the moment when it is 
absolutely necessary to stop engine operations. 
Proposed methodology helps airline operators in 
the planning process of the engine replacement, 
repairs and overhauls, which are extremely 
expensive and usually require spare engines 
which are not available at any moment. 
 
 
3. LITERATURE REVIEW 
 
Machine Learning (ML) is a branch of artificial 
intelligence that studies algorithms able to learn 
autonomously, directly from the input data. ML 
techniques have made a huge leap forward. That 
is why researchers have started to consider ML 
for applications within the industrial field. ML 
was considered to be applied in maintenance and 
quality management, with failure modes 
classification and prediction, condition 
monitoring and fault detection or downtime 
minimization and maintenance planning.  
 
However, industrial applications are still few and 
limited. What are the emerging areas of machine 
learning applications in industry. For example, 
Feng et. al. [1] proposed a transfer learning 
algorithm for gear wear severity assessment. In 
2023 Feng et. al [2] analysed vibration-based 
gear wear monitoring and prediction techniques. 
With machine learning algorithms and neural 
network models, continuous values can be 
predicted and individual groups can be classified. 
Machine learning and neural networks could also 
be applied to the analysis of research results in a 
broad context. Using machine learning, it is 
possible to effectively determine correlations 
between individual tribological parameters and 
their strength, classify the test samples, and 
determine their influence on individual 
parameters such as wear area or depth, like 
presented by Marian and Tremmel [3], 
Rosenkranz et.al [4] or Hasan et.al [5]. 
 
Even though machine learning algorithms have 
been applied in some aspects of the software 
engineering, still not many publications could be 
found in the area of the tribology. There are some 
articles concerning very specific elements and 
components of the machines. The latest 
information on how the artificial intelligence with 
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the machine learning algorithm could be applied 
to tribology was presented by Paturi et.al [6]. 
Authors conducted thorough examination of the 
role of machine learning in tribological research 
and concluded that by combining machine 
learning methods with tribological experimental 
data, interdisciplinary research could be 
conducted to better understand efficient resource 
utilization and resource conservation. Rahman 
et.al [7] in the complex review provided a 
thorough examination of seven machine learning 
algorithms applied in the field of tribology. 
Researchers took advantage of artificial neural 
networks, support vector machines, and decision 
trees, which have been successfully applied to 
predict lubricant properties, such as viscosity, 
coefficient of friction COF, and wear, under 
different operating conditions. Another review of 
recent advances and applications of machine 
learning in tribology were presented by Sose et.al 
[8], where they demonstrated successful 
implementation of neural networks, supervised, 
and stochastic learning approaches in identifying 
structure-property relationships. Rosenkranz et.al 
[9] discussed perspectives and presented some of 
the advances achieved by artificial intelligence 
implementation, specifically artificial neutral 
networks, towards tribological research. Another 
review of the machine learning applications into 
the tribology areas was presented by Marian and 
Tremmel [10] or in [11] where they proposed 
physics-informed machine learning algorithm 
implementation. A physics-informed neural 
network (PINN) was also proposed by Chen et.al 
[12] for fatigue life prediction with small amount 
of experimental data enhanced by physical models 
describing the fatigue behaviour of materials, 
while Deng et.al [13] and Rom M. [14] proposed 
this type of network to solve the Reynolds 
equation for finite journal bearings. Ni et.al [15] 
applied modified Physics-Informed Residual 
Network (PIResNet) for rolling element bearing 
fault diagnostics. Zhao et.al [16] applied the 
physics-informed neural network (PINN) to the 
hydrodynamic lubrication analysis. The same type 
of neural network was used by Cheng et.al [17] for 
hydrodynamic lubrication with cavitation. The 
other publications related to AI applications in 
tribology were presented by Hasan and 
Nosonovsky [18] who reviewed ML algorithms 
used to establish correlations between the 
structures of metallic alloys and composite 
materials, tribological test conditions, friction and 
wear. Another area of AI which was applied to 

tribology were the neural networks. For instance, 
Walker et.al [19] proposed application of the 
neural network to improve computational 
efficiency of tribo-dynamic simulations of machine 
elements without comprising accuracy relative to 
the numerical solution. Another neural network 
application was presented by Wang and Tsai [20] 
generated lubrication model was used to instantly 
predict thermohydrodynamic lubrication 
performance with adequate accuracy. Since 
tribology is a very powerful tool in machines 
health status prediction, that is the reason why 
there were some ideas of machine learning 
applications for machine parts and elements 
health status prediction. For instance, ML 
algorithms were tested and successfully applied 
by Hasan et.al [21] for friction and wear prediction 
of Al-graphite composites. Applications of the 
artificial intelligence in rotary machines fault 
detection were proposed by Liu et.al [22]. Zhao 
et.al [23] analysed deep learning neural networks 
in machine health monitoring.  
 
Nevertheless, there are no publications in which 
augmented machine learning algorithms were 
applied to predict real-life turbofan engine health 
status on the basis of the original and real oil 
sampling data. 
 
4. RESEARCH OBJECT DESCRIPTION 
 
The research object selected for the case study and 
application of the machine learning algorithms in 
health status prediction was the turbofan engine 
equipped with the very advanced lubrication 
system. This power plant was a low bypass, high 
compression ratio, dual spool, turbofan engine 
incorporating a mixed flow augmentor. The engine 
is based on the modular concept allowing 
functionally and physically associated parts to be 
removed as modules. These modules are treated as 
individual entities rather than as a section of an 
engine. This concept increases maintainability 
since an engine can be returned to service more 
rapidly by installing a serviceable module rather 
than waiting for its own damaged module to be 
repaired. The five modules that make up the engine 
are as follows: inlet/fan module, core engine 
module, fan drive turbine module, augmentor duct 
and nozzle module, and gearbox module. The main 
area of interest was focused on the engine 
lubrication system. The purpose of the turbofan 
engine lubrication system is to provide oil to all 
engine bearing compartments, bearings and gears 
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of the engine accessory drive gearbox, in order to 
lubricate, clean and cool all the components. Gears, 
located in the gearbox transmit torque between the 
gearbox and the engine accessories, rear 
compressor and the aircraft gearbox. All bearings 
and gears experience friction during engine 
operation so lubricating oil is supplied to the 
bearings and gearbox. The oil removes excess heat 
from the bearing compartments and gearbox to 
help extend the life of the component. The heat is 
removed through the fuel/oil cooler. The 
lubrication system (Figure 1) is divided into three 
subsystems. Pressure Subsystem which supplies 
clean, cool oil to the bearings and gears for 
lubrication and cooling. Scavenge Subsystem which 
collects oil from the bearing compartments and 
gearbox and returns it to the oil tank. Breather 
Subsystem which maintains proper air pressure in 
the bearing compartments to prevent oil leakage 
into the engine gas-path and prevent scavenge 
pump cavitation. 
 

 
Fig. 1. Turbofan engine lubrication system where: 1 – oil 
tank, 2 – main oil pressure transmitter, 3 – low oil pressure 
transmitter, 4 – main oil pump with 3 chip detectors, 5 – 
chip detector No. 2 &3 bearings, 6 – breather pressurizing 
valve, 7 – oil filter, 8 – fuel-oil cooler. 

 
One of the strongest tools in engine health status 
determination and prediction is the Oil Analysis 
Program (OAP). This program is a maintenance 
diagnostic tool which on the basis of the oil 
samples allows to monitor engine health by 
detecting the presence of metal particles (wear 
metals) in the oil. The OAP process provides early 
warning of a pending oil problem and ensures the 
integrity of the engine. Oil samples are usually 
performed with the very specific intervals. For 
the turbofan engine being the research object, the 
requirement is to sample oil after every flight 

operation (during combined postflight/preflight 
inspection). Oil sampling must be performed 
before within 30 minutes after engine shutdown 
and before the engine oil is serviced to prevent 
dilution of the sample. 
 
The whole program is based on the spectrometric 
oil analysis, which is aimed to determine the type 
of amount of wear metals in lubricating fluid 
samples. The presence of unusual concentrations 
of an element in the oil sample can indicate 
abnormal wear of the engine. It allows to detect 
and prevent any engine failures. 
 
 
5. RESEARCH METHODOLOGY 
 
Research case study was based on spectrometric oil 
analysis, which is a diagnostic maintenance tool 
used to determine the type and amount of wear 
metals in lubricating fluid samples. Engines, 
transmissions, gearboxes and hydraulic systems 
are the types of equipment most frequently 
monitored. The presence of unusual concentrations 
of the elements in the fluid sample could indicate 
abnormal wear of the engine and/or its 
components. When the abnormal wear is verified, 
engine may be removed from service before a 
major failure of a fluid wetted component occurs. 
Spectrometric oil analysis enhances aircraft flight 
safety and engine readiness and serves as a 
decisive, preventive maintenance tool. Engine oils 
sample test results may be used as guidelines to 
assist in identifying incipient mechanical failures or 
in determining the quality and useful life of the 
engine oil. That is how the potential engine wear of 
failure and premature lubricant failure may be 
detected prior to a major engine failure or an 
expensive repairs/overhauls. Oil analysis may also 
be used to identify inadequate or improper 
maintenance procedures and low standard engine 
components or its parts. 
 
During engine operations wear metals are 
generated by friction between moving metallic 
surfaces in mechanical part of the engine modules 
and components. Wear metal generation occurs 
also in all wetted subsystems, bearing 
compartments and gearboxes, to some degree and 
the lubricant serves as a repository for the wear 
metals. Metal elements concentration may also be 
generated from corrosive action resulting from 
moisture and electrolytic action within lubricated 
areas. We may conclude that the information 
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related directly to the engine health status exists in 
the circulating lubricating fluid. This conclusion is 
developed as follow: first, the metal particles 
rubbed or gouged off the metal alloy surfaces will 
always have the same chemical compositions as the 
alloys from which they came. Second, the normal 
level and rate of production of each kind of metal 
particle can be established through oil analysis over 
a period of time. When an abnormal level and/or 
rate of production of wear metals is detected, the 
chemical identity of the abnormally produced 
particles will provide clues concerning the identity 
of the engine parts being worn.  
 
In figure 2 a theoretical plot of wear 
concentration in parts per million (ppm) vs. 
engine operating hours or engine cycles was 
presented. Any condition which alters the normal 
relationship or increases the normal friction 
between moving parts will generally accelerate 
the rate of wear and increase the quantity of wear 
metal particles produced. An abnormal condition 
of this type will rapidly increase the 
concentration and rate of buildup of wear metals 
in stable fluid systems. If the condition is not 
detected and corrected, the deterioration will 
continue to accelerate, usually with major 
secondary damage to other parts of the engine or 
its assembly, resulting in the aircraft accident. 
 

 
Fig. 2. Wear metal concentrations vs. Engine 
Hours/Cycles. 

 
Wear metals produced in fluid lubricated 
mechanical assemblies can be measured in 
extremely low concentrations by spectrometric 
analysis of the oil samples taken from the engine. 
In the research case study, it was the atomic 
emission rotrode spectrometer (fig. 3) used to 
analyse collected engine oil samples. An emission 
spectrometer is an optical instrument used to 
determine the concentration of wear metals in 
lubricating fluid. The analysis is accomplished by 
subjecting the oil sample to a high voltage spark 
or plasma which energizes the atomic structure 
of the metallic elements, causing the emission of 

light. The intensity of the emitted light is 
proportional to the quantity of the element 
present in the sample allowing the concentration 
of that element to be determined. The light has a 
specific frequency or wavelength determined by 
the energy of the electron in transition. 
 

 
Fig. 3. Rotating Disc Electrode Optical Emission 
Spectrometer. 

 
Engine oil sampling procedure was introduced 
into the engine maintenance procedures. Oil 
sample was taken from the engine oil tank sample 
port (fig. 4). 
 

 
Fig. 4. Engine oil tank sample port. 

 
Engine oil sample was taken after every flight and 
must be taken prior to servicing the tank to 
prevent dilution of the sample. Every sample was 
taken within 30 minutes after engine shutdown. 
If the sample could not be obtained within 30 
minutes after engine shutdown, engine was 
restarted and ran at idle for 10 minutes to obtain 
adequate oil sampling. 
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Engine oil sample elements concentrations dataset. 
The whole dataset consisted of the collections of the 
test results of 53 turbofan engines operating for the 
last 10 years. It resulted in 10371 records. Each 
record had 18 features: engine serial number, 
aircraft number, data of test, and 15 elements: Fe, 
Ag, Al, Cr, Cu, Mg, Na, Ni, Pb, Si, Sn, Ti, B, Mo, Zn. The 
whole engine test results dataset was divided into 
two sets: training and testing dataset consisting of 
the 7174 and 3197 records respectively. All engines 
were manufactured within the same 2-year period. 
However, they had various numbers of the engine 
flight hours / cycles collected. Nevertheless, all of 
the engines have not reached first scheduled 
overhaul. This fact is especially important, as the 

complete overhaul might change oil analysis result 
throughout the whole engine life cycle.  
 
One of the crucial steps in engine health status 
prediction was to design Engine Health Status 
Model. Engine Health Status Model (EHStatus 
Mdl) was constructed on the basis of the OAP 
Atomic Emission Rotrode Limits and wear 
concentration levels and presented in table 1. 
 
What is worth noticing is the fact that Engine 
Health Status was determined not only on the 
basis of the elements’ concentration level, but 
also on the basis of the abnormal trends tracked 
for the last ten engine flights.  

 

Table 1. Engine Health Status Model architecture. 

EHStatus 

OAP Atomic Emission Rotrode Limits [mg ∙ kg−1] 

Ag Al B Cr Fe Ni Si Ti Zn Level 
Engine Health 
Index Number 

Engine Control 2 4  2 4 2  4  
Abnormal Trend (ppm 

Increase in 10 Hrs) 
1 

Engine OK 02 010  04 010 04  010  Normal Range 5 

Increased N/A 1112  5 1112 5  1112  Marginal Range  4 

High 3 1314  6 1314 6  1314  High Range 3 

Failure  4  15  10  7  15  7  15  15  8 Abnormal 2 

Engine training dataset was trained with the 
various machine learning algorithms like 
ensemble learner, Naive bayes, Support Vector 
Machines SVM, and tree based. Total number of 
iterations for the training was set at 105. 
Maximum time for training and validation was 
not set. Training was stopped when the loss 
function reached its minimum values or when the 
gradient of change for the loss function increased 
for the six following trials.  
 

 
Fig. 5. Optimization Progress for the training process 
with various hyperparameters. 

In order to optimize the training algorithm, the 
whole training process was optimized for all the 
machine learning algorithms and various 
hyperparameters. 
 
In figure 5 training optimization process was 
presented. During this process the validation loss 
is calculated in each following iteration. 
 
The main purpose of this step was to determine 
and select the best training machine learning 
algorithm for engine health status prediction. The 
best training results were achieved for Naive 
Bayes model with 0.0019515 observed validation 
loss and kernel distribution with width equal to 
0.0649. The naive Bayes classifier is designed for 
use when predictors are independent of one 
another within each class, but it also works well in 
practice even when that independence 
assumption is not valid. It classifies data in two 
steps: training step, in which on the basis of the 
training data, the method estimates the 
parameters of a probability distribution, assuming 
predictors are conditionally independent given 
the class and prediction step, where for any 
unseen test data, the method computes the 
posterior probability of that sample belonging to 
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each class. The method then classifies the test data 
according to the largest posterior probability. The 
class-conditional independence assumption 
greatly simplifies the training step since it is 
possible to estimate the one-dimensional class-
conditional density for each predictor individually. 
While the class-conditional independence 
between predictors is not true in general, research 
shows that this optimistic assumption works well 
in practice. This assumption of class-conditional 
independence of the predictors allows the naive 
Bayes classifier to estimate the parameters 
required for accurate classification while using 
less training data than many other classifiers. This 
makes it particularly effective for data sets 
containing many predictors. The training step in 
naive Bayes classification is based on estimating 
P(X|Y), the probability or probability density of 
predictors X for the given class Y. The kernel 
distribution applied in the article is appropriate 
for predictors that have a continuous distribution. 
It does not require a strong assumption such as a 
normal distribution and it can be used in cases 
where the distribution of a predictor may be 
skewed or have multiple peaks or modes. It 
requires more computing time and more memory 
than the normal distribution. For each predictor, 
the naive Bayes classifier computes a separate 
kernel density estimate for each class based on the 
training data for that class. By default, the kernel is 
the normal kernel, and the classifier selects a 
width automatically for each class and predictor. 
 
As a following step the best training algorithm 
was implemented and applied to the engine test 
dataset. In order to analyse engine health status 
predictions there were some performance 
metrics introduced.  
 
One of the most important neural network 
performance metrics is the cross-entropy loss 
function (PRF). The function returns a result that 
heavily penalizes outputs that are extremely 
inaccurate (�̃�𝑖  ~ 1−yi), with very little penalty for 
fairly correct classifications (�̃�𝑖  ~ yi). Minimizing 
cross-entropy allow to converge to classification 
model. 
 
where: 

yi – the following target value, 

�̃�𝑖  – the following predicted value, 

                                                 
1 residual value = actual y value − predicted y value 

Cross-entropy (PRF) could be calculated in 
accordance with equation 1. 

𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = 𝑃𝑅𝐹(�̃�, 𝑦) =  − ∑ 𝑦𝑖𝑙𝑛�̃�𝑖  𝑁
𝑖=1  (1) 

In addition to the previously mentioned 
performance metrics, some more were added 
as a part of the comparison between the results 
achieved for the simulated and real-life engine 
data.  
 

Accuracy performance metric. This 
performance metric is usually used in the case 
of the classification neural networks, where it 
is calculated as a ratio of the sum of the True 
Positive and True Negative values divided by 
the sum of True Positives (TP), True Negatives 
(TN), False Positives (FP) and False Negatives 
(FN). It could be calculated in accordance with 
equation 2. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
   (2) 

The next performance metric is the mean 
absolute percentage error MAPE which is 
calculated between the predicted values and the 
actual values. It can be defined as: 

𝑀𝐴𝑃𝐸 =  
1

𝑁
∑

𝑦𝑖− �̃�𝑖

𝑦𝑖
 𝑁

𝑖=1 ∙ 100%   (3) 

Another performance metric, which is used in 
the Recurrent Neural Networks (RNN) is the 
coefficient of determination R-squared. In the 
context of regression, it is a statistical measure 
of how well the regression line approximates 
the actual data. R-squared coefficient can be 
calculated in accordance with equation 4. 

𝑅2 = 1 −
𝑆𝑆𝑅

𝑆𝑆𝑇
= 1 −

∑ (𝑦𝑖−�̃�𝑖)2𝑁
𝑖=1

∑ (𝑦𝑖−�̅�)2𝑁
𝑖=1

  (4) 

where: 

N – number of observations, 

SSR – sum squared regression is the sum of the 
residuals1 squared, 

SST – total sum of squares is the sum of the 
distance the data is away from the mean all 
squared, 

yi – the following target value, 

�̃�𝑖  – the following predicted value, 

�̅� – the mean of the predicted value 
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Percentage of errors %Error which the sum of the 
mispredictions divided by the number of 
elements in the dataset.  

%𝐸𝑟𝑟𝑜𝑟 =  ∑
(𝑦𝑖~= �̃�𝑖) 

𝑁
𝑁
𝑖=1 ∙ 100%   (5) 

Another comparison of the results might be 
performed by comparing relative accuracy RA, 
which could be calculated as a ratio of predictions 
to the actual values: 

𝑅𝐴 =  
�̃�𝑖

𝑦𝑖
∙ 100%   (6) 

Precision is the metric which presents how 
accurate the positive predictions are, and could 
be calculated as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (7) 

Recall is a metric that measures how often a 
machine learning model correctly identifies 
positive instances (true positives) from all the 
actual positive samples in the dataset and is 
calculated as follows: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (8) 

The F1 score is calculated as the harmonic mean 
of the precision and recall scores, as shown 
below. It ranges from 0-100%, and a higher F1 
score denotes a better-quality classifier. 

𝐹1𝑆𝑐𝑜𝑟𝑒 =  
2∙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∙𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
   (9) 

One of the new machine learning performance 
metrics introduced into the case studies is the: 
Matthew’s correlation coefficient (MCC). MCC is 
the best single-value classification metric 
which helps to summarize the confusion matrix 
or an error matrix. A confusion matrix has four 
entities: True positives (TP), True negatives 
(TN), False positives (FP) and False negatives 
(FN). Contrary to other well-known 
performance metrics like: F1score or 
prediction accuracy, MCC is related to all four 
confusion matrix entities. The formula to 
calculate MCC is presented in equation 10. 

𝑀𝐶𝐶 =  
𝑇𝑁∙𝑇𝑃−𝐹𝑁∙𝐹𝑃

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
 (10) 

MCC metric reflexes how good are the 
prediction rates for all four of these entities. 
MCC is said to be a reliable measure producing 
high scores. In order to suit most correlation 
coefficients, MCC also ranges between +1 and -
1, where: +1 is the best agreement between the 

predicted and actual values and 0 is no 
agreement (meaning, prediction is random 
according to the real actual values). MCC helps 
to identify the ineffectiveness of the classifier in 
classifying especially the negative class 
samples. 
 
What are the differences between MCC and F1 
score? To evaluate binary classifications and 
their confusion matrices, scientists take 
advantage of several statistical rates, accordingly 
to the goal of the experiment they are 
investigating. Despite being a crucial issue in 
machine learning, no widespread consensus has 
been reached on a unified elective chosen 
measure yet. Accuracy and F1 score computed on 
confusion matrices have been (and still are) 
among the most popular adopted metrics in 
binary classification tasks. However, these 
statistical measures can dangerously show 
overoptimistic inflated results, especially on 
imbalanced datasets. 
 
The Matthews correlation coefficient (MCC), 
instead, is a more reliable statistical rate that 
produces a high score only if the prediction 
obtained good results in all of the four 
confusion matrix categories (true positives, 
false negatives, true negatives, and false 
positives), proportionally both to the size of 
positive elements and the size of negative 
elements in the dataset. 
 
 
6. RESULTS 
 
Confusion matrix for the original model and 
engine dataset was presented in figure 6. 
 

 
Fig. 6. Confusion matrix for the original engine dataset. 
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Confusion matrix was sorted according to the 
positive predictive value PPV, and the cell values 
were normalized across each column. As it might 
be deduced from the confusion matrix, True 
Positive Rate TPR for good engine with engine 
health status OK was 100%, for engine with 
Failure it was 45.5% and for engine with High 
concentration of the metal elements it was 
14.3%. False Negative Rate FNR for engine 
Control and Increased Status was 100%, which 
means that there were no correct engine health 
status predictions. The Positive Predicted Values 
PPV was 99.6% for OK engine health status, 
62.5% for Failure and 50% for High. 
 
As it might be easily noticed from the confusion 
matrix the results achieved for the original 
dataset and engine health status model were not 
satisfying. In order to improve the machine 
learning performance, it was decided to 
implement very advanced automated features 
engineering function.  
 
In addition to the original 15 predictors, new 35 
features were generated to check the machine 
learning algorithm performance and accuracy. 
Before passing original engine training data to a 
classifier, new additional features were 
generated from the predictors in the engine 
dataset. The returned data was used to train the 
classifier. As a part of the predictors generation, 
the minimum redundancy maximum relevance 
(MRMR) features selection method was 
implemented. The MRMR algorithm finds an 

optimal set of features that is mutually and 
maximally dissimilar and can represent the 
response variable effectively. The algorithm 
minimizes the redundancy of a feature set and 
maximizes the relevance of a feature set to the 
response variable. The algorithm quantifies the 
redundancy and relevance using the mutual 
information of variables-pairwise mutual 
information of features and mutual information 
of a feature and the response. As a part of the 
MRMR feature selection, predictors were ranked, 
and then included into the requested number of 
top-ranked features in new training engine 
dataset. 
 
In order to better understand the generated 
features, it was decided to generate information 
about the transformation function. The results 
were presented in table 2. Some generated 
features are a combination of multiple 
transformations. For example, some features 
were generated by converting the variable to a 
categorical variable with k-means clustering. 
K-means clustering is a type of unsupervised 
learning. The main goal of this algorithm to find 
groups in data and the number of groups is 
represented by K. It is an iterative procedure 
where each data point is assigned to one of the K 
groups based on feature similarity. K-means 
algorithm starts with initial estimates of K 
centroids, which are randomly selected from the 
dataset. The algorithm iterates between two 
steps assigning data points and updating 
centroids. 

 
Table 2. Results of the transformation function applied to original dataset. 

Feature Name Data type Input Variables Transformations 

kmi Categorical all valid numeric variables Cluster index encoding (kmeans clustering with k = 10) 

Al.*Ti Numeric Al, Ti Al .* Ti 

kmd10 Numeric all valid numeric variables Euclidean distance to centroid 10 (kmeans clustering with k = 10) 

Ni+Ti Numeric Ni, Ti Ni + Ti 

kmd4 Numeric all valid numeric variables Euclidean distance to centroid 4 (kmeans clustering with k = 10) 

Sn-Ti Numeric Sn, Ti Sn - Ti 

kmd8 Numeric all valid numeric variables Euclidean distance to centroid 8 (kmeans clustering with k = 10) 

kmd3 Numeric all valid numeric variables Euclidean distance to centroid 3 (kmeans clustering with k = 10) 

kmd9 Numeric all valid numeric variables Euclidean distance to centroid 9 (kmeans clustering with k = 10) 

Cr+Ti Numeric Cr, Ti Cr + Ti 

kmd6 Numeric all valid numeric variables Euclidean distance to centroid 6 (kmeans clustering with k = 10) 

Fe.*Ti Numeric Fe, Ti Fe .* Ti 

kmd1 Numeric all valid numeric variables Euclidean distance to centroid 1 (kmeans clustering with k = 10) 
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The automated features were added to the original 
data in order to enhance the machine learning 
performance and engine health status simulation. 
On the basis of the newly generated engine dataset, 
the original test engine dataset was transformed 
into an enhanced collection of records with 50 
predictors. Confusion matrix for the original model 
and engine dataset was presented in figure 7. As it 
might be easily deduced from the confusion matrix 
presented in figure 7 for the augmented engine 
dataset the results are definitely better. In this case 
scenario True Positives Rate for Engine Health 
Statuses: Control, Failure and OK equalled 100%, 
while for High and Increased it was 57% and 50% 
respectively. The results achieved with the novel 
algorithm are especially important due to the fact 
that Engine Health Status: Failure was predicted in 
100% cases. This situation is extremely important 
for the engine flight safety.  
 

 

Fig. 7. Confusion matrix for the augmented engine 
dataset with automated features engineering. 

Even very minor misprediction rate might result 
in engine failure and aircraft serious incident or 
accident. The Positive Predicted Values PPV was 
100% for OK, Control and High engine health 
statuses, 73.3% for Failure and 75% for 
Increased Engine Health Status. 
 
The results achieved for all the performance 
metrics were presented in Table 3. 
 
Comparing the results of the machine learning 
algorithms achieved and presented in table 3 it is 
worth mentioning that considering performance 
PRF, accuracy, precision, recall, F1score and 
relative accuracy RA, the higher the results 
achieved are the better machine learning 
algorithms are working, and engine health status 
predictions are more accurate. 
 

As far as the MAPE, MSE, RMSE, R2 coefficient 
and MCC are concerned, the lower the result is 
the better the predictions are. For these 
performance metrics, results which are closer 
to zero values represent the situation when the 
misprediction rate is very low, and all the 
predictions are close to the target values. As it 
might be easily deduced from the results 
presented in table 3, we may conclude that the 
proposed novel methodology resulted in the 
increment in the prediction error 
minimalization ranged from 34.5% for MCC to 
87.5% for MAPE. For MSE achieved 
improvement equaled 85.5%, RMSE 62% and 
R2 54.4%.  

Table 3. Machine Learning algorithm performance results for original and augmented model. 

Model PRF Accuracy Precision Recall F1Score RA MAPE MSE RMSE R2 MCC 

Original Model 
Dataset 

0.9962 0.9974 0.9949 0.9999 0.9974 20.2365 0.5656 0.0262 0.1619 0.4266 0.6146 

Augmented Model 
Dataset 

0.9990 0.9992 0.9996 0.9999 0.9998 20.1918 0.0703 0.0037 0.0612 0.9353 0.9392 

 

In figure 8 prediction results were presented for 
one of the engines with the original engine model 
and dataset. For engine #049 engine health status 
began to decrease after 4th oil sample testing and 
changed to the Increased level. Then it stayed for 
the next three flights at the same level when it 
decreased again to level 3 which is High Level of 
concentration. Again, the number of particles 
stayed at the same level for the following 3-4 flights 
and decreased again to the abnormal level and 

health index 2, being the engine Failure level. This 
is the situation where it is not safe to continue 
engine flight operations, as it might result in engine 
in-flight failure and aircraft accident. Unfortunately, 
engine health status prediction performed by the 
machine learning algorithm was not accurate and 
the prediction did not reflect the real engine health 
status. Even though it decreased after similar 
number of flights, but to the incorrect level being 
Failure not the High. What is worse is that after a 
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few flights it returned to OK engine health status, 
while in real the engine kept degrading. Analyzing 
all the engines it is easy to notice that for most of 
them, engine health status prediction was close to 
the target values. Only for two engines there are 
some discrepancies, where predictions differ from 
the target values. This was the reason why it was 
decided to improve machine learning performance 
by automated features engineering 
implementation. On the basis of the original engine 
dataset, augmented engine health status dataset 
was created and new 35 predictors were generated. 
 
In figure 9 results achieved of the machine learning 
algorithm engine health status prediction was 
presented. As it might be noticed, in this case 
scenario, the Predicted engine health status was 
definitely more accurate, and engine degradation 
was reflected with an error close to zero values. 
 

 

 
Fig. 8. Real and predicted Engine Health Status for Engine 
#049 (a) and plot of the predicted and real engine health 
status for all engines and original engine dataset (b). 

In some cases, for instance for the MAPE, MSE and 
RMSE the improvement was greater of the order 
of magnitude. As it might be noticed from figure 
9b for all the engines and augmented dataset the 
predicted values exactly reflect the real engine 
health status. 
 
On the basis of the results achieved from the 
augmented machine learning classification, it 
turned out that two of the turbofan engines #049 
and #052 should be set either on surveillance 
status on classified as unsafe for flight operations 
and removed from service. For both engines the 
alert for the propulsion maintenance 
management personnel should be triggered.  
 

 

 
Fig. 9. Real and predicted Engine Health Status for 
Engine #049 (a) and plot of the predicted and real engine 
health status for all engines and augmented engine 
dataset with automated features engineering (b). 

 
What should be the procedure for the engine with 
predicted Engine Health Status below OK Status. 
In the case when the concentration of any of the 

a) 

b) 

a) 

b) 
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tracked elements exceeds the Abnormal Level 
then the Engine Health Status is classified as 
Engine Failure. If the trending concentration of 
the Fe and Ti elements (within the 10 last flight 
cycles) exceeds the abnormal level, engine must 
be set on surveillance for the next 10 flight cycles. 
If the Fe and Ti concentrations again exceed the 
abnormal (failure) level, then engine must be 
removed from the aircraft and flight operations 
and disassembled. While on surveillance, engine 
maintenance management should be focused on 
Ti concentration and remove engine from service 
immediately when the level of concentration 
reaches the Engine Failure Level. For the Fe, the 
level of concentration for the next two following 
flights must not exceed 5 ppm. 
 

 
 

 
Fig. 10. Elements concentrations in oil samples for 
engine #049 (a) and #052 (b). 

 
In figure 10 concentrations of the elements for 
the suspected engines #049 and #052 were 
presented. As it might be deduced from fig.10a 
the level of Ni concentration in oil sample 
collected from engine #049 started to increment 
from sample 4. If the increment trends exceed 2 
ppm for the next 10 following engine flight hours, 
Engine Health Status must be changed to Engine 
Control. For the same engine oil sample, the 

Increased Level has been exceeded. The 
increment continued until for engine oil sample 9 
reached High level and for sample 13 exceeded 
Engine Failure level. Engine #052 has been set on 
surveillance since engine oil sample number 113. 
The reason for this was the fact that the trending 
increment of Ti concentration exceeded 4 ppm. 
After two consecutive flight cycles the level of 
concentration reached Increased Level and 
continued to increase to reach High and Failure 
levels within the next 5 flight cycles. 
 
 
7. SUMMARY AND CONCLUSIONS 
 
Machine Learning algorithms might be a very 
strong and efficient tool in engine health status 
prediction based on the tribological data. What is 
worth mentioning is the fact that sometimes during 
engine flight operations there might be no sudden 
(rapid) increments in the amount of elements 
concentrations. What might be the real case 
scenario is the slow engine degradation. This 
situation could be detected with the analysis of the 
oil samples spectrometric results trending. It 
means that not only the level of the elements’ 
concentration is important while predicting engine 
health status but also the trends of increments.  
 
The main goal of the article was to present an idea 
of the artificial intelligence implementation for the 
tribology test results interpretation. The novel 
approach has been proposed and the whole 
methodology was discussed in a very precise way. 
On the basis of the collected engine oil sample test 
results, the augmented collection of the engine oil 
features was generated. This kind of features 
engineering allowed for the significant 
improvement of the machine learning predictions 
of the engine health status. Analyzing various 
machine learning performance metrics, it was 
possible to precisely compare predictions 
accuracy as well as the prediction errors. The 
predictions were also graphically presented, what 
allowed to visualize how the applied machine 
learning algorithm worked for all the engines.  
 
The main goal of the article was achieved and 
confirmed for two of the engines. For both of them 
the proposed algorithm correctly confirmed the 
alerting change of the Engine Health Status. The 
machine learning algorithm not only indicated the 
alerting change of the engine health status, but 
also pointed which of the statuses were reached. 

a) 

b) 
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This allowed to, with reference to the designed 
Engine Health Status Model to focus on some of 
elements. On the basis of the analysis of the engine 
oil samples dataset it was detected that the 
degradation of the Engine Health Status was 
caused by the increment of the Ni element in 
engine #049 and Ti for engine #052.  
 
On the basis of the case study and proposed 
machine learning methodology, it was decided to 
remove engine from service and check the 
condition of the suspected reasons for the 
elements concentrations increments. Analyzing 
construction of the case study turbofan engine as 
well as the type of the materials used to build 
engine components and parts the primary 
components to check should be as follows:  

- engine #049 – No. 4 engine bearing 
compartment of the engine core module and 
high-pressure spool,  

- engine #052 – No. 5 bearing compartment of 
the low-pressure turbine module. 

 
Another extremely important factor of the research 
case study presented in the article was the fact that 
all the data was collected for the real turbofan 
engines. Engine oil sample test results were not 
generated or simulated but were collected for a few 
years of engine flight operations.  
 
The question might be raised why building the 
engine health index number, which is used to 
define engine health status, only the presence of 
unusual concentrations of the elements in the 
fluid sample was taken under consideration. 
There are some publications where oil physical 
properties were considered.  
 
For example, Jadhao [24] used machine learning 
methods to process high-dimensional simulation 
data generated in non-equilibrium molecular 
dynamics simulations, and ultimately obtained the 
correlation between rheological properties and 
molecular arrangement evolution in elastohydro 
dynamic lubrication, revealing the mechanism of 
viscosity decreasing with rates under low pressure 
of lubricants. Jones et al. [25] proposed one of the 
first applications of an ML algorithm in wear 
volume prediction for metal and alloys. They used 
load, speed, sliding distance, temperature, friction 
coefficient and kinematic viscosity as the input 
variables for machine learning algorithms. Peric et. 
al. [26] pointed out that if there is wear of the 

contact surfaces, there are wear particles present. 
Experimental results showed a change in the 
viscosity index of lubricants. Neural networks have 
also been applied by Afrand et.al [26] to lubricated 
contacts to model friction and lubricant viscosity to 
aid lubricant design. 
 
Unfortunately, none of the physical properties is 
being tested on the object of the research being 
the aircraft turbofan engine. According to the 
engine manufacturer recommendations, engine 
oil physical properties have not been tested and 
tracked. This was the reason why oil physical 
properties were not taken under consideration 
while designing engine health status model. In 
addition to this, contrary to the mentioned 
publications, in the proposed methodology, we 
are not trying to predict engine oil life but the 
engine mechanical wear and degradation. 
 
To summarize the results, it is possible to 
conclude that the machine learning algorithms 
might work well for the engine health status 
prediction based on the tribological data. Still, 
even for this number of features, the augmented 
engine oil sample dataset should be generated to 
achieved desired prediction accuracy and to 
minimize prediction errors.  
 
As a future and following work the hybrid engine 
health status model could be developed which 
combines proposed machine learning algorithm 
and simulation model with tribological 
parameters like friction force, friction coefficient, 
contact temperature, noise, or vibration. 
 

Presented methodology could be implemented 
into the aircraft (engine) maintenance 
management computer system, which could 
allow to automate engine health status analysis 
and improve engine maintenance management. 
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