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 A B S T R A C T 

Rolling Element Bearings perform a vital function by ensuring the reliable and 
efficient operation of machinery in modern industries. Timely and accurate 
diagnosis of bearing faults is essential for preventing unexpected failures and 
minimizing downtime. This research addresses these challenges by employing 
advanced signal processing techniques and machine learning algorithms. The 
study investigates and optimizes fault diagnosis of rolling element bearings 
using various machine learning techniques, including Random Forest (RF), 
Support Vector Machine (SVM), Logistic Regression (LR), K-Nearest Neighbors 
(KNN), and Multi-Layer Perceptron (MLP). The study utilizes naturally 
occurring defect vibrational data obtained from continuous running in the 
experimental test rig. Initially, a baseline for fault classification accuracy was 
established using raw vibration data. Then, Signal-to-Noise Ratio (SNR) was 
introduced to enhance data quality and alleviate the impact of noise. The 
model was further refined by extracting 14 types of features from the SNR-
enhanced vibration data, presenting a comprehensive depiction of fault 
patterns and finally, machine learning techniques were applied to categorize 
faults using the aforementioned datasets, facilitating a comparative analysis of 
results. This optimization of the signal enhancement methodology significantly 
improved the fault diagnosis accuracy. As per the result obtained, Random 
Forest method consistently outperforms when applied to the feature-enhanced 
SNR dataset. The findings contribute to a more accurate and reliable 
identification of faults, offering significant advancements in the field of 
machinery health monitoring and predictive maintenance. 
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1. INTRODUCTION 
 
Rolling element bearings provide a supportive 
role for smooth functioning of rotating 
machines in various industries, including 

manufacturing, energy, and transportation [1]. 
Their continuous and reliable performance is 
essential for maintaining the efficiency and 
safety of industrial processes. However, these 
bearings are susceptible to wear and 
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deterioration due to environmental and 
operational factors, which lead to unexpected 
failures. Such failures often result in costly 
downtime, repairs, and safety risks [2]. To 
mitigate these, condition monitoring of bearings 
has become crucial in predictive maintenance 
strategies [3,4]. 
 
Effective fault diagnosis of rolling element 
bearings significantly enhances predictive 
maintenance programs [5], ensuring early 
detection and resolution of potential issues 
before they escalate into more severe problems 
[6]. Traditional fault detection methods often 
struggle with data quality issues, leading to 
inaccurate diagnoses. Addresses the challenges 
associated with accurately detecting bearing 
faults, particularly in noisy and complex 
industrial environments, by applying advanced 
machine learning techniques combined with 
preprocessing methods, such as signal-to-noise 
ratio (SNR) enhancement to improve the 
accuracy and reliability of fault diagnosis. 
 
In recent years, advancements in sensor 
technologies and techniques related to 
processing signals have revolutionized in the 
field of fault diagnosis for bearings. These 
innovations have led to the development of 
advanced methods capable of accurately 
detecting, classifying, and predicting bearing 
faults. Various approaches are employed for 
fault classification. Zheng et al. [7] explored 
the acoustic emission signals and machine 
learning techniques for enhanced bearing fault 
diagnosis, highlighting the synergies between 
these modalities and reporting promising 
results. Mohammed and Abdulhady [8] 
integrated vibrational signal assessment and 
cumulative sum control charts for condition 
monitoring. The research successfully 
demonstrates the effectiveness of this 
combined approach in accurately detecting 
faults, providing valuable insights for 
optimizing maintenance practices and 
preventing unexpected failures in rolling 
bearings. Among various methods, the 
vibration-based approaches are more effective 
in bearing diagnostics and its potential to 
improve predictive maintenance strategies 
through combining with other techniques. 
Randall and Antoni [9] Presented envelope 
analysis and spectral kurtosis diagnosis 
methods for analyzing acceleration signals in 

the presence of masking signals. Real-life case 
studies demonstrate the successful 
application of these techniques, showcasing 
their effectiveness in identifying bearing faults 
and separating signals from other machine 
components. Tong et al. [10] delve into the 
fusion of multi-sensor data using Dempster–
Shafer evidence theory for bearing fault 
detection, offering a reliable approach with 
improved diagnosis accuracy. Han et al. [11] 
introduced a fault diagnosis approach for 
rolling bearings utilizing multiscale Rényi 
entropy and AdaBoost ensemble learning, 
achieving improved accuracy in fault 
detection. Bin et al. [12] proposed a fault 
diagnosis methodology based on wavelet 
packet decomposition and Dempster–Shafer 
theory, showcasing an integrated approach for 
improved accuracy. The presence of noise in 
the vibration signal makes it difficult for the 
model to accurately classify the fault 
categories. To address this, some denoising 
methods are combined with the raw signals to 
enhance classification accuracy, allowing the 
model to effectively discern fault categories 
despite the presence of noise in the vibration 
data. Abbasion [13] proposed a hybrid method 
for rolling elements bearing diagnosis of fault, 
combining wavelet transform and empirical 
mode decomposition to enhance the diagnosis 
capabilities. Zhang et al. [14] propose a hybrid 
method combining variational mode 
decomposition and ensemble empirical mode 
decomposition for bearing fault diagnosis. 
Hamadache M and Lee D. [15] introduced an 
algorithm that effectively enhances signal-to-
noise ratio in incomplete faulty signals. By 
combining modified principal component 
analysis with a low-pass filter, it outperforms 
traditional methods in preserving fault 
information while reducing noise. 
Experimental validation on ball bearing fault 
detection demonstrates its effectiveness. Wei 
et al. [16] offered a comprehensive 
examination of various defect detection 
methods for rolling element bearings, 
covering both traditional and advanced 
approaches and summarized comparative 
effectiveness. Advanced approaches like 
machine learning techniques have 
significantly advanced the field of bearing fault 
diagnosis. These methods increase diagnostic 
accuracy and efficiency while reducing the 
reliance on expert knowledge required in 
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traditional methodologies. Singh et al. [17] 
explored the application of artificial neural 
network (ANN) for bearing fault detection and 
classification, presenting a methodology for 
effective implementation. Samanta [18] 
investigated the use of decision trees for 
diagnosis defects in bearings based on 
vibrational signals, showcasing a data-driven 
approach achieving an accuracy of 85% based 
on vibration signal.  
 
The literature assessment revealed that using 
traditional signal processing techniques alone is 
insufficient to achieve improved results. 
Detecting industrial operational surface faults 
in rolling element bearings from vibration 
signals with high accuracy in the early stage is 
one of the major challenges. In order to achieve 
high accuracy, various signal analysis 
techniques are explored in this work before 
feature extraction, and the performance is 
evaluated with raw signals. Moreover, the usage 
of SNR in integration with statistical features is 
considered. Accordingly, the main contributions 
of this research: the test bearing operated 
continuously for over 2000 hours to simulate 

the development of naturally occurring 
operational surface defects on the bearing 
surface similar to those found in practical 
applications and capture vibration signal at 
three distinct point of lifecycle of bearing. Then 
signal to noise ratio (SNR) was introduced to 
improve the quality of vibration signal by 
reducing noise impact. In the subsequent phase, 
efficiency was optimized by extracting 14 kinds 
of features which includes Mean, Max, Min, Peak 
to peak, Variance, Root Mean Square (RMS), 
Absolute mean, Shape factor, Impulse factor, 
Crest factor, Absolute max, Clearance factor, 
Kurtosis and Skewness, from the SNR-enhanced 
vibration data. In the final, Random Forest, 
Support Vector Machine, Logistic Regression, K-
Nearest Neighbors, and Multi-Layer Perceptron 
based machine learning models are 
implemented and compared for fault 
classification. These findings offer a critical 
need in industrial maintenance by developing 
more accurate and reliable methods for fault 
diagnosis in rolling element bearings, with 
applications that greatly benefit a wide range of 
industries. The methodology flowchart is 
depicted in Fig. 1. 

 

 
Fig. 1. The structural framework of the proposed fault diagnosis method. 

 
2. SIGNAL TO NOISE RATIO 
 
Signal to Noise Ratio (SNR) is a measure used to 
quantify the relative strength of a signal against 
the background noise in a system, with positive 
and negative values holding different 

significance. A positive SNR indicates that the 
signal strength exceeds the noise level, which is 
desirable for clearer detection and analysis of 
fault information. A negative SNR means the 
noise is stronger than the signal, making it 
difficult to accurately detect or interpret the 
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signal [19]. It is a crucial concept in various 
fields, including telecommunications, 
electronics, and signal processing. SNR is 
typically expressed in decibels (dB) and 
represents the ratio of the power or amplitude 
of a signal to the power or amplitude of 
background noise [20]. The formula for SNR is 
given in equation 1. A higher SNR value 
indicates a stronger and more distinguishable 
signal relative to the noise. It is desirable for 
clear and reliable communication, accurate 
measurements, and high-quality signal 
processing. Conversely, a lower SNR suggests 
that the signal is weaker and may be more 
susceptible to interference from noise, 
increasing the degradation in signal quality. 
Increasing the SNR is often a goal in the design 
and optimization of communication systems 
and electronic devices to ensure accurate and 
reliable operation. 

𝑆𝑁𝑅 = 10 × 𝑙𝑜𝑔10  ( 
Signal energy

Noise energy
 ) (1) 

The aim is to assess the SNR for a given 
dataset by generating white noise. In signal 
processing, white noise is a random signal 
characterized by equal power density across 
all frequencies. Mathematically, white noise is 
generated using the Gaussian distribution, 
with a mean of 0 and a standard deviation of 
1. Depicted in equation 2 [20]. 

𝑓(𝑥) =  
1

√2𝜋𝜎2
 𝑒𝑥𝑝 ( 

(𝑥 − 𝜇)2

2𝜎2
 ) (2) 

Where x is the random variable, μ is the mean 
of the distribution and σ is the standard 
deviation. This ensures that the resulting 
noise exhibits randomness without bias 
towards any particular frequency. The length 
of the white noise sequence determines the 
number of random samples generated, 
providing flexibility in the sample size for 
analysis. Additionally, clipping the generated 
noise values to a defined range constrains the 
noise amplitude. The addition operation is 
applied element-wise by combining each 
element of the original dataset with the 
corresponding element of the generated white 
noise. This process generates a new dataset by 
adding intentional noise to the original signal. 
The resulting dataset is analyzed to evaluate 
signal processing algorithm performance. 
 

3. FEATURE EXTRACTION 
 

The statistical features were extracted from the 
SNR-enhanced signals to ensure that all 
potentially informative characteristics of the 
vibration signals were represented. These 
features were selected to capture both time-
domain and frequency-domain aspects critical 
for distinguishing various types of faults. 
 

To optimize this feature set, applied feature 
importance analysis techniques. This analysis 
helped identify features that provided minimal 
predictive value and the most effective features 
for distinguishing between healthy and faulty 
bearings. This streamlined feature set effectively 
captures the essential characteristics of vibration 
signals necessary for fault diagnosis. The 
extracted feature includes [21,22]: 
 

3.1 Mean 
 

The mean value represents the average of all 
data points in the signal. 

𝑀𝑒𝑎𝑛 (�̅�) =  
1

𝑛
 ∑ 𝑥𝑖

𝑛

𝑖=1
 (3) 

Where 𝑥𝑖  are the data points and N is the total 
number of data points. 
 
3.2 Maximum (Max) 
 
The maximum value is the highest amplitude in 
the data set. 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 =  max (𝑥𝑖) (4) 

3.3 Minimum (Min) 
 
The minimum value is the lowest amplitude in 
the data set.  

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 =  min (𝑥𝑖) (5) 

3.4 Peak-to-Peak (PP) 
 
The peak-to-peak value represents the range of 
values in the signal, calculated as the difference 
between the maximum and minimum values. 

𝑃𝑃 =  𝑀𝑎𝑥𝑖𝑚𝑢𝑚 −  𝑀𝑖𝑛𝑖𝑚𝑢𝑚 (6) 

3.5 Variance 
 
The variance measures the spread or variability 
of the signal from its mean. 
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𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  
1

𝑛
 ∑ (𝑥𝑖 −  �̅�)2

𝑛

𝑖=1
 (7) 

3.6 Root mean square (RMS) 
 
The RMS value measures the effective power or 
amplitude of the signal. 

𝑅𝑀𝑆 =  √
1

𝑛
 ∑ 𝑥𝑖

𝑛

𝑖=1
 (8) 

3.7 Absolute mean 
 
The absolute mean is the mean of the absolute 
values of the data points. 

𝐴𝑏𝑠 𝑀𝑒𝑎𝑛 =  
1

𝑛
 ∑ |𝑥𝑖|

𝑛

𝑖=1
 (9) 

3.8 Shape factor 
 
The shape factor is the ratio of the RMS value to 
the absolute mean value. 

𝑆𝐹 =  
𝑅𝑀𝑆

1
𝑛

 ∑ |𝑥𝑖|
𝑛
𝑖=1

 
(10) 

3.9 Absolute maximum 
 
The absolute maximum is simply the maximum 
of the absolute values of the signal data points. 

𝐴𝑏𝑠 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 =  max (|𝑥𝑖|) (11) 

3.10 Impulse factor 
 
The impulse factor is the ratio of the maximum 
value to the absolute mean value. 

𝐼𝐹 =  
𝐴𝑏𝑠 𝑀𝑎𝑥𝑖𝑚𝑢𝑚

1
𝑛

 ∑ |𝑥𝑖|
𝑛
𝑖=1

 
(12) 

3.11 Crest factor 
 
The crest factor is the ratio of the maximum 
value to the RMS value. 

𝐶𝐹 =  
𝐴𝑏𝑠 𝑀𝑎𝑥𝑖𝑚𝑢𝑚

𝑅𝑀𝑆
 (13) 

3.12 Clearance factor  
 
The clearance factor is the ratio of the maximum 
value to the square of the RMS value. 

𝐶𝑙𝐹 =  
𝐴𝑏𝑠 𝑀𝑎𝑥𝑖𝑚𝑢𝑚

(
1
𝑛

 ∑ √|𝑥𝑖|
𝑛
𝑖=1 )2

 (14) 

3.13 Kurtosis 
 
Kurtosis measures the "tailedness" of the data 
distribution. Higher kurtosis indicates more 
outliers. 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =  
∑ (

𝑥𝑖 − �̅�
𝑛 )𝑛

𝑖=1

𝜎2
 (15) 

3.14 Skewness  
 
Skewness measures the asymmetry of the data 
distribution around the mean. 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =  
∑ (𝑥𝑖 − �̅�)3𝑛

𝑖=1

𝑛
 (16) 

 
4. EXPERIMENTATION 
 
Experimental tests were performed on 
dedicated rig to collect vibration signals from 
healthy and operational faulty bearings. The 
setup includes a three-phase 2.3 kW AC motor 
with a variable frequency drive to control and 
maintain consistent speed, two bearing SKF 
6411 and NJ307ECP. The entire setup 
mounted on I-section beams secured a 
concrete block to minimize external 
vibrations. The experiment took place in an 
atmospheric environment, and an anechoic 
chamber was used to reduce external noise 
interference during the experiment. Fig. 2 
illustrates an arrangement of wire rope and 
pulley system on test rig. A radial load was 
applied to the load rotor, which is positioned 
50 mm from the test bearing. The NJ307ECP 
test bearing featured an outer diameter of 80 
mm, inner diameter of 35 mm, rolling element 
diameter of 11 mm, and axial width of 21 mm. 
The experiment replicated real-world 
conditions by running a bearing continuously 
in a test rig for 2000 hours at a constant speed 
of 8000 rpm and a radial load of 1.5 kN. Over 
time, faults occurs on the bearing surface, 
closely resembling defects commonly seen in 
industrial operations.  
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Fig. 2. Schematic diagram of experimental test rig. 

 
The data was collected from an experimental test 
rig, which was specifically designed to simulate 
real-world operating conditions of rolling 
element bearings. Experiments were conducted 
to run the bearing over 2000 hours at a radial 
load of 1.5 kN and a constant rotational speed of 
8000 rpm in atmospheric conditions. Over a 
continuous operation of 2000 hours, vibration 
data was recorded at three critical time points: 
Zero hours (healthy condition), after 1000 hours 
of operation (intermediate wear), and after 2000 
hours of operation hours (severe wear). 
 
For each time point, a magnetic base 
accelerometer was used to capture vibration 
signals, with a sampling frequency of 20 kHz over 
a period of one second for each sample. The 
vibration signals were stored using the 
DEWESoft system on a desktop computer. The 
dataset included signals from both healthy 
bearings and bearings with occurring wear 
defects, which developed progressively during 
continuous operation. This dataset serves as the 
basis for the fault diagnosis models applied. 
 
 
5. CLASSIFICATION METHODS 

 
This research involves fault classification for 
rolling element bearings using machine-learning 
models. The datasets used for classification are 
captured at three distinct time points: initially at 
zero hours, subsequently after 1000 hours of 

operation, and finally after 2000 hours of 
operation. These time points represent various 
stages in the lifecycle of the rolling element 
bearings, reflecting the evolution of vibration 
patterns over time. The software used in this 
program is Python with Scikit-Learn library. The 
computer used to run the network is configured 
with an Intel Core i7 CPU, and 16GB RAM. 
Integrating this temporal dimension into the 
dataset enriches the analysis by capturing the 
bearing behaviour across various operational 
durations, thereby enabling a comprehensive 
understanding of fault progression and detection. 
 
The collected raw vibration signal was 
preprocessed using Signal-to-Noise Ratio (SNR) 
enhancement to reduce noise and improve signal 
clarity. After the SNR adjustment, 14 statistical 
features were extracted from the vibration 
signals, as described in section 3. 
 
The input data fed into the machine learning 
models consisted of: Vibration signal samples 
recorded at three-time intervals (0 hours, 1000 
hours, 2000 hours), Preprocessed SNR-enhanced 
dataset, 14 extracted features for each sample of 
SNR enhanced dataset, including time-domain 
and frequency-domain features. 

 
The entire dataset was split into training, testing, 
and validation sets using random sampling 
method with a 70:15:15 ratio respectively. This 
allowed for effective model training while 
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ensuring that the models were tested on unseen 
data to evaluate generalization performance. 
Each model was trained using the training 
dataset and evaluated on the testing and 
validation datasets to assess classification 
accuracy. Performance of machine learning 
models across these datasets to discern their 
adaptability and efficacy in bearing fault 
diagnosis. The models are assessed based on 
their accuracy in classifying the fault pattern in 
the vibration data. The results indicate the 
varying strengths of each model under different 
data conditions, emphasizing the importance of 
feature engineering and considering SNR in 
enhancing fault classification accuracy. It 
validates the effectiveness of models in real-
world scenarios, enhancing the theoretical 
foundation for predictive maintenance strategies. 
The process of model is shown in fig. 3. 
 
5.1 Random forest (RF) 
 
RF is an ensemble learning algorithms renowned 
for its effectiveness in classification and 
regression tasks. It builds numerous decision 
trees in the training process, each trained on a 
resample of the dataset with feature 
randomization at each split. The final prediction 
is determined through a voting mechanism for 
classification or averaging for regression, 
leveraging the collective wisdom of diverse trees 
[23]. This approach reduces overfitting, enhances 
generalization, and estimates out-of-bag error. 
The algorithm also assigns importance scores to 
features, aiding in feature selection, with its 
capability to manage high-dimensional data, 
resist overfitting, and parallelize tree 
construction, Random Forest stands is an 
accurate and widely utilized machine learning 
technique. The function of output value is shown 
in equation 17 [23]. 

�̂�𝑝𝑟𝑒𝑑 =  
1

𝛽
 ∑ �̂�𝑏

𝐵

𝑏=1

 (17) 

Where �̂�𝑏 is the predicted value from tree b, β is the 
model coefficient, and �̂�𝑝𝑟𝑒𝑑  is the final predicted 

value. These equations capture the essence of how 
Random Forest amalgamates the forecasts from 
numerous decision trees to produce reliable and 
precise predictions. The power of Random Forest 
lies in the diversity and randomness introduced 
during both the training of individual trees and the 
ensemble prediction process. 

 
Fig. 3. Flow chart of fault diagnosis models. 

 
An RF classifier was trained with 20 decision 
trees (estimators = 20) to capture complex 
relationships in the dataset. The model was 
initialized with a random seed (random state = 
42) to ensure reproducibility. The model was 
fitted to the data and evaluated using five-fold 
cross-validation, capturing both individual fold 
accuracy scores and the mean accuracy as 
performance indicators. Training took 
approximately 0.5 sec per sample. The ensemble 
approach of Random Forest is especially suitable 
for noisy data, as it reduces variance by averaging 
the predictions of multiple trees. 

 
5.2 Support vector machine (SVM) 

 
SVM is a supervised machine learning algorithm 
commonly utilized for identification and 
regression tasks. Its principal aim is to discover a 
hyperplane that separates data into distinct 
classes while maximizing the margin between the 
classes. [24]. SVM can be capability to manage 
non-linear decision boundaries by using the 
kernel size. The decision function in the feature 
space is shown in equation 18 [24]. 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛 ( ∑ 𝛼𝑖 𝑦𝑖𝐾(𝑥𝑖 , 𝑥) + 𝑏

𝑁

𝑖=1

) (18) 

Here, N represents the count of support vectors, 
α is the Lagrange multipliers, y is the labels class, 
K(xi, x) signifies the kernel function and b is the 
constant value. SVM is recognized for its 
proficiency in managing high-dimensional data, 
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resilience in the presence of outliers, and 
effectiveness in capturing complex relationships 
through kernel functions. The performance of 
SVM is significantly influenced by the selection of 
the kernel and tuning parameters. 
 
SVM used a linear kernel to simplify the model 
with given the dataset and the tolerance was set 
to 0.1 to influence the stopping criterion. A 
random state of 100 (random state =100) was set 
for reproducibility. The model required 0.6 
seconds per sample in computational time, and 
five-fold cross-validation was applied to assess 
generalization, with the average score across 
folds calculated as the performance metric. 
 
5.3 Logistic regression (LR) 
 
Logistic Regression is a foundational machine 
learning method, widely used for binary 
classification tasks [25]. Despite its name, it 
predicts probabilities not regressions, employing 
the sigmoid function to transform real values to a 
[0, 1] range.  

𝑃(𝑦 = 1) =
1

1 + exp(−(𝛽0 + 𝛽1𝑋1+ 𝛽2𝑋2 + ⋯ + 𝛽𝑛𝑋𝑛)) 
 

(19) 

Here, 𝛽1, 𝛽2 ⋯ , 𝛽𝑛 are the slope coefficients 
corresponding to each predictor variable 
𝑋1, 𝑋2 ⋯ ⋯ 𝑋𝑛. The model equation 19 [25] 
estimates the probability (P) of the positive class, 
trained by optimizing coefficients for maximum 
likelihood, Logistic Regression excels when the 
relationship between features and the target is 
approximately linear. Its simplicity, efficiency, 
and interpretability make it valuable in fields like 
social sciences, finance, and medicine for binary 
classification problems. 
 
LR was employed with the Limited-memory BFGS 
(lbfgs) optimization algorithm, suited for multiclass 
classification problems (multi class = multinomial). 
A random seed of 6 was used to enable 
reproducibility. The model required 0.8 seconds 
per sample in computational time and underwent 
five-fold cross-validation to determine its 
performance, with the mean accuracy across folds 
was computed to measure model effectiveness. 
 
5.4 K-Nearest neighbors (KNN) 
 
KNN is a versatile machine-learning algorithm 
applied to both identification and regression tasks. 

It anticipates the class or value of a data-point by 
considering the majority class or average of its k-
nearest neighbors in the feature space. In 
classification, it assigns a class label by taking into 
account the labels of the KNN, while in regression, 
it predicts a continuous value based on their 
average [26]. The parameter K is crucial, impacting 
the trade-off between noise and smoothing. KNN is 
non-parametric, not presuming any assumptions 
about the distribution of the data, suitable for 
complex relationships. Its performance depends on 
the choice of distance metric and is sensitive to the 
course of dimensionality. Despite this, KNN 
remains popular for its simplicity and effectiveness 
in applications like pattern recognition, image 
analysis, and recommendation systems. 
 
The KNN classifier was trained with 75 neighbors 
(neighbors = 75) to account for the complexity 
and noise in the data. The model required 0.6 
seconds per sample in computational time and 
Five-fold cross-validation was applied to assess 
the effectiveness of the model, with the mean 
accuracy score taken as the performance metric. 
 
5.5 Multilayer perceptron (MLP) 
 
MLP is a neural network model employed in 
machine learning for both identification and 
regression tasks, comprising multiple layers of 
interconnected nodes [27]. MLP processes 
information through forward and backward 
propagation. Each node employs an activation 
function to process the weighted sum of its 
inputs, enhancing the model's ability to capture 
complex patterns. MLP's design encompasses an 
input layer, one or more hidden layers, and an 
output layer. With the capacity to learn intricate 
relationships, MLP excels in diverse applications. 
These include natural language processing, image 
recognition, and financial forecasting, rendering 
it a versatile and powerful tool within the domain 
of artificial intelligence [28].  
 
A Multi-Layer Perceptron classifier was trained 
with a hidden layer containing 512 units and the 
Limited-memory BFGS solver for optimization. 
The regularization parameter was set 10-5 to 
prevent overfitting. The model was initialized 
with a random seed 10 to ensure reproducibility 
and evaluated with five-fold cross-validation 
with mean accuracy. Computational time 
required for the model was approximately 15 
seconds per sample. 
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6. RESULTS AND DISCUSSION 
 

This section represents brief summary of 
outcomes in rolling element bearings subjected 
under various conditions on a test rig. The bearing 
underwent continuous operation until a naturally 
occurring surface defect developed in one of its 
components. The preliminary indication of an 
anomaly emerged after 306 hours of continuous 
operation during the experiment.  
 

Experimental vibrational signal was 
systematically collected at different intervals, 
captured the vibrational signal for a healthy 
bearing, after 1000 hours of continuous 
operation, and after 2000 hours of continuous 
operation, visually represented in fig. 4. These 
vibrational datasets served as crucial indicators 
to analyze the evolving conditions of the bearing 
over time, providing valuable insights into its 
operational health and potential faults. 

 

 
(a) 

 

 
(b) 

 
(c) 

Fig. 4. Experimental vibrational signals (a) healthy 
bearing, (b) after 1000 hours of running, (c) after 2000 
hours of running. 

 
The dataset, comprising 384 samples across 
three distinct time intervals (healthy, after 1000 
hours and after 2000 hours of defects), enabled 
the machine learning models to differentiate 
between different fault conditions. The 
effectiveness of the results, particularly the high 
accuracy of the machine learning model, will be 
attributed to the diverse and comprehensive 
nature of the dataset or data pool, which captured 
progressive fault development in a controlled 
environment. The overview of the dataset, 
including the number of samples at the different 
conditions, is shown in Table 1. 
 
Table 1. Data summary.  

Bearing 
Condition 

Number of 
Samples 

Vibration Signal 
Characteristics 

Healthy 
Bearing 

(Zero hour) 
128 

Baseline vibration, low 
amplitude 

After 1000 
hours of 

operation 
128 Moderate amplitude 

After 2000 
hours of 

operation 
128 

High amplitude, 
irregularities 

Total 384  

 
The performance of the obtained signal was 
evaluated using five different machine learning 
models: Support Vector Machine, Random Forest, 
Logistic Regression, K-Nearest Neighbors, and 
Multi-layer perceptron. In the initial phase of 
fault classification approach, raw vibration data 
was used to establish a baseline for fault 
classification accuracy. The maximum accuracy 
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obtained for the above mentioned model is 
74.74%, which is comparatively lower than the 
existing method. Further, for recognizing the 
potential improvement, SNR is applied to the raw 
vibration signals to mitigate the effects of noise. 
This is achieved by adjusting the SNR values to 
ensure that the informative signal components 
(related to bearing faults) stand out more clearly 
against the background noise. Specifically, the 
SNR values are tuned between 19 dB and 45 dB. 
This range allows for an optimal balance between 
eliminating noise and retaining essential signal 
characteristics. The raw data undergoes 
transformation where Gaussian white noise is 
added based on a predefined SNR value, which is 
calculated using Equation (1). This improved 
dataset was then further analysed using the 
above mentioned machine learning models. 
Among these, Random Forest exhibited the 
highest accuracy when the SNR value was 26dB. 
Lower SNRs left noise, hindering fault detection, 
while higher SNRs over-smoothed the data, 
losing crucial fault information. The 26dB level 
balanced noise reduction and signal 
preservation, supporting accurate fault 
classification. It also observed that there is a 
slight improvement in the accuracy to the 

original vibration signal, highlighting the 
algorithm's resilience and effectiveness in noise-
prone conditions. 
 
In the subsequent phase, the efficiency of the fault 
classification system was further optimized by 
extracting 14 kinds of relevant features from the 
SNR-enhanced vibration data. These features 
were carefully selected to capture crucial aspects 
of the system's behavior, providing a more 
comprehensive and informative representation 
of the underlying fault patterns. 
 
The final step applied machine learning models to 
classify faults based on the enriched dataset 
containing both SNR-enhanced signals and the 
extracted features. By combining these 
strategies, our approach is not only to mitigate 
the influence of noise but also to leverage the 
distinctive characteristics captured through 
feature extraction. This multistep process was 
designed to synergistically improve the overall 
accuracy and efficiency of fault identification, 
enabling more accurate and reliable 
identification of faults in the system. Table 2 
illustrates the performance of machine learning 
algorithms across different datasets. 

 
Table 2. Results obtained for various datasets. 

 Random Forest 
Support Vector 

Machine 
Logistic 

Regression 
K-Nearest 
Neighbors 

Multi-Layer 
Perceptron 

Raw Data 74.74 73.05 30.96 33.33 60.41 

With SNR 79.69 73.60 32.52 33.33 60.93 

With SNR-
featured 

91.41 89.85 90.63 89.85 91.16 

In the initial assessment using raw vibration data, 
the machine learning models displayed varying 
accuracies 74.74% for Random Forest, 73.05% for 
Support Vector Machine, 30.96% for Logistic 
Regression, 33.33% for K-Nearest Neighbors, and 
60.41% for Multi-Layer Perceptron, respectively. 
Upon adding SNR to the dataset, an improvement 
was observed. Random Forest's accuracy increased 
to 79.69%, and Logistic Regression exhibited a 
modest increase to 32.52%, while K-Nearest 
Neighbors remained consistent at 33.33%. Multi-
layer Perceptron and Support Vector Machine 
showed a slight improvement to 60.93% and 
73.60%, respectively. After the introducing SNR 
along with features further improved performance, 
with Random Forest leading at 91.41%, followed 
closely by Support Vector Machine, Logistic 
Regression, K-Nearest Neighbors, and Multi-Layer 

Perceptron at 89.85%, 90.63%, 89.85%, and 
91.16%, respectively. The comparison results are 
shown in fig. 5. The results indicated that models 
with raw data exhibited higher lack of fit values, 
reflecting the challenges of noise and unprocessed 
data. After introducing SNR enhancement and 
feature extraction, the lack of fit values significantly 
decreased, indicating a better fit of the models to 
the processed data. These indicate the varying 
strengths of each model under different data 
conditions, emphasizing the importance of feature 
engineering and considering SNR in enhancing fault 
classification accuracy.  
 
The effectiveness of these techniques varies with 
the SNR ratio applied in the raw signal. SNR focuses 
on improving data quality by reducing noise and 
feature extraction offers a more detailed and 
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informative representation of fault patterns, 
minimizing the lack of fit and improving overall 
performance. The accuracies of all mentioned 
machine learning techniques have reached 
approximately 90% for the SNR-featured dataset. 
 

 
Fig. 5. Comparative results of machine learning 
method across various dataset. 

 
Evaluating the contribution of individual features 
to classification accuracy involved calculating 
feature importance scores using the Random 
Forest algorithm. These scores indicate the 
relative significance of each feature in 
determining fault classification, shown in fig. 6. 
Analysis indicated that Root Mean Square (RMS), 
Variance, and Maximum were the most effective 
features for distinguishing between healthy and 
faulty bearings, whereas Shape Factor, Kurtosis, 
and Mean had comparatively lower contributions 
to classification performance. 

 
Fig. 6. Feature mapping. 
 

The methodology highlights the adaptability and 
effectiveness of various machine learning models 
under different data conditions, showcasing their 
potential in fault diagnosis. The findings provide 
valuable insights for industrial applications, 
offering a practical framework for implementing 
advanced machine learning techniques in 
predictive maintenance strategies, which lead to 
improved operational efficiency and detect 
failure before downtime. Furthermore, the 
research contributes to the existing body of 
knowledge by emphasizing the importance of 
data quality and feature engineering in machine 
learning applications, paving the way for future 
research in fault diagnosis and condition 
monitoring. 

 

Table 3. Classification accuracy of the proposed model in comparison to previous studies. 

Proposed/Existing work Features Measured signal Classifier Accuracy (%) 

Kankar et al. [29] Statistical feature Vibration signal ANN & SVM 80 & 85 

Kumar et al. [30] 
Continuous wavelet 

transform 
Vibration signal KNN 83.3 

Pan et al. [31] Linear kernel Vibration signal TCA 84.51 

Present work 
SNR with Statistical 

feature 
Vibration signal RF 91.41 

Table 3 summarizes a comparison study between 
the proposed method and existing published 
works. It is observed that the performance of the 
proposed method is better than the other existing 
methods. The proposed model achieved 91.41% 
classification accuracy. This improvement boosts 
operational reliability by enabling earlier fault 
detection, which can prevent failures and reduce 
downtime in industrial applications. It also sets a 
new benchmark, demonstrating the effectiveness 
of combining Signal-to-Noise Ratio (SNR) 
enhancement with machine learning techniques. 

7. CONCLUSIONS 
 
The evaluation of fault classification performance 
for rolling element bearings entailed a thorough 
analysis of five machine learning models, 
Random Forest, Support Vector Machine, Logistic 
Regression, K-Nearest Neighbors, and Multi-layer 
Perceptron. Each model underwent scrutiny at 
distinct data processing stages to discern their 
adaptability and efficacy in bearing fault 
diagnosis. Initially, with raw vibration data, 
Random Forest emerged as the leading 
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performer with an accuracy of 74.74%. The 
subsequent integration of SNR demonstrated a 
consistent enhancement in model accuracy, with 
Random Forest leading at 79.69%. The most 
significant advancement was observed after 
incorporating additional feature extraction into 
the SNR dataset. In this final stage, Random 
Forest, Logistic Regression, and Multi-Layer 
Perceptron exhibited exceptional accuracy, 
reaching above 90%, emphasizing the substantial 
impact of feature and SNR in refining the fault 
classification capabilities of these machine 
learning models. These comprehensive findings 
recommend Random Forest for fault diagnosis in 
industrial settings due to its high accuracy and 
quick prediction capabilities, integrating Random 
Forest into predictive maintenance systems 
ensures reliable, efficient, and scalable solutions 
for effective machinery fault diagnosis. Future 
research may explore the integration of deep 
learning techniques to further enhance the 
accuracy and automation of bearing fault 
diagnosis. 
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